We present a theory of the cavity quantum electrodynamics of graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to verify the impossibility of superradiant instability.

Generalized Dicke Model of Graphene Cavity QED

Pellegrino F. M. D.
2017-01-01

Abstract

We present a theory of the cavity quantum electrodynamics of graphene cyclotron resonance. By employing a canonical transformation, we derive an effective Hamiltonian for the system comprised of two neighboring Landau levels dressed by the cavity electromagnetic field (integer quantum Hall polaritons). This generalized Dicke Hamiltonian, which contains terms that are quadratic in the electromagnetic field and respects gauge invariance, is then used to verify the impossibility of superradiant instability.
2017
978-3-319-53663-7
File in questo prodotto:
File Dimensione Formato  
chapter_PucciBook.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 304.88 kB
Formato Adobe PDF
304.88 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/318373
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact