Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabilities. This provided novel insight into the wiring and the working of central brain structures like the mushroom bodies and the central complex. Plasticity of the nervous system underlies adaptive behaviour. Drosophila flies show various memories from a 4-s working memory for orientation to a life-long body-size memory. Here we will discuss some of the functions and brain structures underlying fitness and role-model function of insects for autonomously roving robots.

Biological investigation of neural circuits in the insect brain

Patanè, Luca
;
Arena, Paolo
2018-01-01

Abstract

Watching insects thoughtfully one cannot but adore their behavioural capabilities. They have developed amazing reproductive, foraging and orientation strategies and at the same time they followed the evolutionary path of miniaturization and sparseness. Both features together turn them into a role model for autonomous robots. Despite their tiny brains, fruit flies (Drosophila) can orient, walk on uneven terrain, in any orientation to gravity, can fly in adverse winds, find partners, places for egg laying, food and shelter. Drosophila melanogaster is the model animal for geneticists and cutting-edge tools are being continuously developed to study the underpinnings of their behavioural capabilities. This provided novel insight into the wiring and the working of central brain structures like the mushroom bodies and the central complex. Plasticity of the nervous system underlies adaptive behaviour. Drosophila flies show various memories from a 4-s working memory for orientation to a life-long body-size memory. Here we will discuss some of the functions and brain structures underlying fitness and role-model function of insects for autonomously roving robots.
2018
978-3-319-73346-3
978-3-319-73347-0
Biotechnology; Chemical Engineering (all); Mathematics (all); Materials Science (all); Energy Engineering and Power Technology; Engineering (all)
File in questo prodotto:
File Dimensione Formato  
Biological investigation of neural circuits in the insect brain.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 332.61 kB
Formato Adobe PDF
332.61 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/334779
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact