Rules mined from a data set represent knowledge patterns relating premises and decisions in 'if ..., then ... ' statements. Premise is a conjunction of elementary conditions relative to independent variables and decision is a conclusion relative to dependent variables. Given a set of rules, it is interesting to rank them with respect to some attractiveness measures. In this paper, we are considering rule attractiveness measures related to three semantics: knowledge representation, prediction and efficiency of intervention based on a rule. Analysis of existing measures leads us to a conclusion that the best suited measures for the above semantics are: support and certainty, a Bayesian confirmation measure, and two measures related to efficiency of intervention, respectively. These five measures induce a partial order in the set of rules. For building a strategy of intervention, we propose rules discovered using the Dominance-based Rough Set Approach - the "at least" type rules indicate opportunities for improving assignment of objects, and the "at most" type rules indicate threats for deteriorating assignment of objects. © Springer-Verlag Berlin Heidelberg 2005.

Measuring attractiveness of rules from the viewpoint of knowledge representation, prediction and efficiency of intervention

Greco, Salvatore
2005

Abstract

Rules mined from a data set represent knowledge patterns relating premises and decisions in 'if ..., then ... ' statements. Premise is a conjunction of elementary conditions relative to independent variables and decision is a conclusion relative to dependent variables. Given a set of rules, it is interesting to rank them with respect to some attractiveness measures. In this paper, we are considering rule attractiveness measures related to three semantics: knowledge representation, prediction and efficiency of intervention based on a rule. Analysis of existing measures leads us to a conclusion that the best suited measures for the above semantics are: support and certainty, a Bayesian confirmation measure, and two measures related to efficiency of intervention, respectively. These five measures induce a partial order in the set of rules. For building a strategy of intervention, we propose rules discovered using the Dominance-based Rough Set Approach - the "at least" type rules indicate opportunities for improving assignment of objects, and the "at most" type rules indicate threats for deteriorating assignment of objects. © Springer-Verlag Berlin Heidelberg 2005.
3540262199
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/361673
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? ND
social impact