The possibility to scavenge energy from vibration and to measure, at the same time, additional information, such as physical characteristics of the incoming source of energy, is of great interest in the modern research. This includes autonomous sensing elements, smart transducers and innovative methods of measurements also in the context of “industry 4.0”. The pursued approach concerns an electromagnetic transducer able to harvest energy coming from the environment (kinetic source of energy), as consequence, charges will be accumulated inside a storage capacitor. It is also capable to measure the mechanical power and transmits the information by using an optical method. It is worth noting that the proposed architecture works without conditioning circuits or active elements. The smart transducer for energy scavenging is designed and experiments are performed showing the suitability of the proposed device.
Smart transducers for energy scavenging and sensing in vibrating environments
Trigona C.;Baglio S.;
2019-01-01
Abstract
The possibility to scavenge energy from vibration and to measure, at the same time, additional information, such as physical characteristics of the incoming source of energy, is of great interest in the modern research. This includes autonomous sensing elements, smart transducers and innovative methods of measurements also in the context of “industry 4.0”. The pursued approach concerns an electromagnetic transducer able to harvest energy coming from the environment (kinetic source of energy), as consequence, charges will be accumulated inside a storage capacitor. It is also capable to measure the mechanical power and transmits the information by using an optical method. It is worth noting that the proposed architecture works without conditioning circuits or active elements. The smart transducer for energy scavenging is designed and experiments are performed showing the suitability of the proposed device.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.