A hybrid photovoltaic/thermal collector (PV/T) is used to produce simultaneously electrical and thermal energy from absorbed solar irradiation. The research to date has tended to focus on either bi-fluids (water and air) as the working fluid to supply energy needs for different applications. The purpose of this work is to test the performances of PV/T at different operating modes of fluid e.g. the air mode, the water mode, and the simultaneous mode (water& air). Furthermore the effect of mass flow rate as a key parameter for better electrical and thermal performances has been investigated. The PV/T performances were assessed based on a dynamic numerical model. An energy balance equations have been established for each layer, then implemented in MATLAB software. The results show that thermal efficiency in the simultaneous mode (air & water) is better compared to others modes. The thermal efficiencies for independently fluid condition have ranged from approximately 20 to 48%, and increased to a maximum efficiency of near to 68% for the case of the simultaneously fluids. This result indicates that the optimum mass flow rates for air and water are 0.035 kg/s and 0.007 kg/s respectively. Therefore, the theoretical model developed of the independently and simultaneously operational modes is validated, evidencing a good fit between simulation results and the experimental data available in literature experimental.

Mass flow rates effect on the performance of PV/T bi-fluid hybrid collector (single and simultaneous modes)

Tina G. M.
Membro del Collaboration Group
;
Gagliano A.
Membro del Collaboration Group
2020-01-01

Abstract

A hybrid photovoltaic/thermal collector (PV/T) is used to produce simultaneously electrical and thermal energy from absorbed solar irradiation. The research to date has tended to focus on either bi-fluids (water and air) as the working fluid to supply energy needs for different applications. The purpose of this work is to test the performances of PV/T at different operating modes of fluid e.g. the air mode, the water mode, and the simultaneous mode (water& air). Furthermore the effect of mass flow rate as a key parameter for better electrical and thermal performances has been investigated. The PV/T performances were assessed based on a dynamic numerical model. An energy balance equations have been established for each layer, then implemented in MATLAB software. The results show that thermal efficiency in the simultaneous mode (air & water) is better compared to others modes. The thermal efficiencies for independently fluid condition have ranged from approximately 20 to 48%, and increased to a maximum efficiency of near to 68% for the case of the simultaneously fluids. This result indicates that the optimum mass flow rates for air and water are 0.035 kg/s and 0.007 kg/s respectively. Therefore, the theoretical model developed of the independently and simultaneously operational modes is validated, evidencing a good fit between simulation results and the experimental data available in literature experimental.
2020
978-981-15-6258-7
978-981-15-6259-4
Bi-fluid
Electrical power
PV/T collector
Thermal power
File in questo prodotto:
File Dimensione Formato  
PVT bi-fluid hybrid collector.pdf

solo gestori archivio

Descrizione: Articolo principale
Tipologia: Documento in Pre-print
Dimensione 498.11 kB
Formato Adobe PDF
498.11 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/482177
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? ND
social impact