The use of molding compound as encapsulating material is nowadays increasing in semiconductor industry. Such component guarantees excellent thermal and reliability performances than the current silicone-based gel, enabling higher working temperature for semiconductor device and mitigating the solder joint reliability bottleneck. The adhesion of package interfaces between copper components and molding compound is one of the key aspect for optimized durability. Dedicated experiments and theoretical framework based on fracture mechanic are needed for this purpose. The presented activity proposes the fracture toughness characterization of copper-resin interface in a power semiconductor package. Double Cantilever Beam (DCB) test has been executed on dedicated bimaterial coupon with an initial crack at interface. The aim of this test has been to enhance the fracture propagation mode-I (opening). Strain energy release rate (SERR) and mode-mixity have been estimated from this experiment developing a finite element analysis that is able to predict the crack length during the experimental DCB trials and to predict the energy release rate by virtual crack closure technique (VCCT). Mode-mixity has been estimated collecting displacements near the crack tip by crack surface displacement method (CSD). The proposed methodology for fracture toughness characterization represents a strong pillar to predict fracture behavior due to any load conditions and it is needed to describe interface adhesion by cohesive zone method (CZM).
Fracture Toughness Characterization of Copper-Resin Interface in Power Electronics Application
Sitta A.;Oliveri S. M.;Sequenzia G.
2022-01-01
Abstract
The use of molding compound as encapsulating material is nowadays increasing in semiconductor industry. Such component guarantees excellent thermal and reliability performances than the current silicone-based gel, enabling higher working temperature for semiconductor device and mitigating the solder joint reliability bottleneck. The adhesion of package interfaces between copper components and molding compound is one of the key aspect for optimized durability. Dedicated experiments and theoretical framework based on fracture mechanic are needed for this purpose. The presented activity proposes the fracture toughness characterization of copper-resin interface in a power semiconductor package. Double Cantilever Beam (DCB) test has been executed on dedicated bimaterial coupon with an initial crack at interface. The aim of this test has been to enhance the fracture propagation mode-I (opening). Strain energy release rate (SERR) and mode-mixity have been estimated from this experiment developing a finite element analysis that is able to predict the crack length during the experimental DCB trials and to predict the energy release rate by virtual crack closure technique (VCCT). Mode-mixity has been estimated collecting displacements near the crack tip by crack surface displacement method (CSD). The proposed methodology for fracture toughness characterization represents a strong pillar to predict fracture behavior due to any load conditions and it is needed to describe interface adhesion by cohesive zone method (CZM).File | Dimensione | Formato | |
---|---|---|---|
Calabretta_et_al_2022_Fracture Toughness Characterization.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Dimensione
659.36 kB
Formato
Adobe PDF
|
659.36 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.