In this work the warpage of a power modules ceramic substrates due to temperature variation has been numerically calculated. It has been used a not linear finite element model, which account the experimentally characterized material properties, including the copper elastoplasticity. Model results have been compared with dedicated interferometric measurements to validate the model. As application example, it has been calculated the benefit in terms of temperature warpage realized with a different substrate design option.

Power Module Ceramic Substrates: mechanical characterization and modeling

Sitta, A;Mirone, G;
2020-01-01

Abstract

In this work the warpage of a power modules ceramic substrates due to temperature variation has been numerically calculated. It has been used a not linear finite element model, which account the experimentally characterized material properties, including the copper elastoplasticity. Model results have been compared with dedicated interferometric measurements to validate the model. As application example, it has been calculated the benefit in terms of temperature warpage realized with a different substrate design option.
2020
978-172816049-8
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 5
social impact