In this work the warpage of a power modules ceramic substrates due to temperature variation has been numerically calculated. It has been used a not linear finite element model, which account the experimentally characterized material properties, including the copper elastoplasticity. Model results have been compared with dedicated interferometric measurements to validate the model. As application example, it has been calculated the benefit in terms of temperature warpage realized with a different substrate design option.

Power Module Ceramic Substrates: mechanical characterization and modeling

Sitta, A;Mirone, G;
2020-01-01

Abstract

In this work the warpage of a power modules ceramic substrates due to temperature variation has been numerically calculated. It has been used a not linear finite element model, which account the experimentally characterized material properties, including the copper elastoplasticity. Model results have been compared with dedicated interferometric measurements to validate the model. As application example, it has been calculated the benefit in terms of temperature warpage realized with a different substrate design option.
2020
978-172816049-8
File in questo prodotto:
File Dimensione Formato  
2020 Power_Module_Ceramic_Substrates_mechanical_characterization_and_modeling.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.1 MB
Formato Adobe PDF
1.1 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/519977
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 5
social impact