Given the significant contamination of our ecosystem caused by synthetic fibers involved in the textile industry, biomaterials derived from renewable resources or endowed with biodegradability characteristics have been proposed as a possible green solution for reducing the environmental impact of fabric production. The use of polymers derived from renewable sources (both biodegradable and non-biodegradable) would result in reduced greenhouses emissions (GHG) and fossil fuel consumption (FFC) when compared to common fossil-based, non-biodegradable polymers, the most common polyester (PET), polyamide (PA), polypropylene (PP). Although less biodegradable compared to natural-based fibers (wool, cotton), aliphatic polyester bio-based fibers are biodegraded more quickly compared to PET fibers. Furthermore, the larger moisture vapor transmission of bio-based polymers compared to PET, PA and PP materials, allows greater breathability by corresponding fabrics. Biobased fibers are also endowed with good mechanical resistance and antibacterial properties, low flammability and less smoke generation.
Biopolymers in Textiles
Patti Antonella;Acierno Domenico
2022-01-01
Abstract
Given the significant contamination of our ecosystem caused by synthetic fibers involved in the textile industry, biomaterials derived from renewable resources or endowed with biodegradability characteristics have been proposed as a possible green solution for reducing the environmental impact of fabric production. The use of polymers derived from renewable sources (both biodegradable and non-biodegradable) would result in reduced greenhouses emissions (GHG) and fossil fuel consumption (FFC) when compared to common fossil-based, non-biodegradable polymers, the most common polyester (PET), polyamide (PA), polypropylene (PP). Although less biodegradable compared to natural-based fibers (wool, cotton), aliphatic polyester bio-based fibers are biodegraded more quickly compared to PET fibers. Furthermore, the larger moisture vapor transmission of bio-based polymers compared to PET, PA and PP materials, allows greater breathability by corresponding fabrics. Biobased fibers are also endowed with good mechanical resistance and antibacterial properties, low flammability and less smoke generation.File | Dimensione | Formato | |
---|---|---|---|
biopolymers-in-textiles.pdf
solo gestori archivio
Tipologia:
Versione Editoriale (PDF)
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
102.04 kB
Formato
Adobe PDF
|
102.04 kB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.