The disclosure is directed to wide band-gap semiconductor devices, such as power devices based on silicon carbide or gallium nitride materials. A power device die is attached to a carrier substrate or a base using sintered silver as a die attachment material or layer. The carrier substrate is, in some embodiments, copper plated with silver. The sintered silver die attachment layer is formed by sintering silver nanoparticle paste under a very low temperature, for example, lower than 200° C. and in some embodiments at about 150° C., and with no external pressures applied in the sintering process. The silver nanoparticle is synthesized through a chemical reduction process in an organic solvent. After the reduction process has completed, the organic solvent is removed through evaporation with a flux of inert gas being injected into the solution.

SILVER NANOPARTICLES SYNTHESIS METHOD FOR LOW TEMPERATURE AND PRESSURE SINTERING

BELLOCCHI GABRIELE
Membro del Collaboration Group
;
CONTINO ANNALINDA
Membro del Collaboration Group
;
MACCARRONE GIUSEPPE
Conceptualization
2021-01-01

Abstract

The disclosure is directed to wide band-gap semiconductor devices, such as power devices based on silicon carbide or gallium nitride materials. A power device die is attached to a carrier substrate or a base using sintered silver as a die attachment material or layer. The carrier substrate is, in some embodiments, copper plated with silver. The sintered silver die attachment layer is formed by sintering silver nanoparticle paste under a very low temperature, for example, lower than 200° C. and in some embodiments at about 150° C., and with no external pressures applied in the sintering process. The silver nanoparticle is synthesized through a chemical reduction process in an organic solvent. After the reduction process has completed, the organic solvent is removed through evaporation with a flux of inert gas being injected into the solution.
2021
File in questo prodotto:
File Dimensione Formato  
US2022108975A1_Original_document_20220506144601.pdf

accesso aperto

Descrizione: Articolo principale
Tipologia: Versione Editoriale (PDF)
Licenza: PUBBLICO - Pubblico con Copyright
Dimensione 1.54 MB
Formato Adobe PDF
1.54 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/529019
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus ND
  • ???jsp.display-item.citation.isi??? ND
social impact