Multi-chiplet systems are a new design paradigm to mitigate the chip design cost and improve yield for complex SoCs. The design space of multi-chiplet systems is much larger compared to a single chip SoC system. To support early stage design space exploration, simulators are of paramount importance. However, existing opensource multi-/many-core simulators are not suitable for simulating large-scale multi-chiplet systems due to the following reasons: 1) lack of accurate inter-chiplet interconnection model, and 2) incapable of supporting large-scale parallel simulation with accurate interconnection modelling. Therefore, we propose a methodology for building up a simulator for multi-chiplet systems using opensource simulators like gem5, sniper, gpgpu-sim, etc. This simulation methodology mimics the reuse and integration idea of chiplets, that is, these existing open-source simulators are reused to simulate individual chiplets, and an inter-simulator-process communication and synchronization protocol is proposed to simulate inter-chiplet communication. The proposed simulation methodology has the following features: 1) Parallel simulation for large-scale systems is supported with inter- and intra-chiplet interconnection accurately modelled. 2) Both distributed and shared memory models are supported for multi-chiplet systems. We also provide a method to modify the code of the open-source simulators like gem5, sniper, gpgpu-sim, etc. for multi-chiplet simulation, and we have released the source code of multi-chiplet simulators based on gem5, sniper, gpgpu-sim at https://github.com/FCAS-SCUT/chiplet_simulators. In the future we will port more applications/benchmarks and integrate more open-source simulators.

A Methodology for Simulating Multi-chiplet Systems Using Open-source Simulators

Palesi, M;
2021-01-01

Abstract

Multi-chiplet systems are a new design paradigm to mitigate the chip design cost and improve yield for complex SoCs. The design space of multi-chiplet systems is much larger compared to a single chip SoC system. To support early stage design space exploration, simulators are of paramount importance. However, existing opensource multi-/many-core simulators are not suitable for simulating large-scale multi-chiplet systems due to the following reasons: 1) lack of accurate inter-chiplet interconnection model, and 2) incapable of supporting large-scale parallel simulation with accurate interconnection modelling. Therefore, we propose a methodology for building up a simulator for multi-chiplet systems using opensource simulators like gem5, sniper, gpgpu-sim, etc. This simulation methodology mimics the reuse and integration idea of chiplets, that is, these existing open-source simulators are reused to simulate individual chiplets, and an inter-simulator-process communication and synchronization protocol is proposed to simulate inter-chiplet communication. The proposed simulation methodology has the following features: 1) Parallel simulation for large-scale systems is supported with inter- and intra-chiplet interconnection accurately modelled. 2) Both distributed and shared memory models are supported for multi-chiplet systems. We also provide a method to modify the code of the open-source simulators like gem5, sniper, gpgpu-sim, etc. for multi-chiplet simulation, and we have released the source code of multi-chiplet simulators based on gem5, sniper, gpgpu-sim at https://github.com/FCAS-SCUT/chiplet_simulators. In the future we will port more applications/benchmarks and integrate more open-source simulators.
2021
9781450387101
Simulator
chiplet
File in questo prodotto:
File Dimensione Formato  
3477206.3477459.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 369.43 kB
Formato Adobe PDF
369.43 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/531360
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 0
social impact