In the last years, the use of Flying Ad-hoc Networks (FANET) to extend and improve the capability of 5G networks, especially in scenarios characterized by poor or completely inexistent structured networks, has been very successful. The possibility to mount, on board of an Unmanned Aerial Vehicle (UAV), a Computing Element, giving it the possibility to host virtual functions (VFs) and provide data processing services, has allowed 5G networks to be able to extend their functionalities closer to the user, in the so-called Edge Network. In this paper, we present a multi-UAVs’ providers network based model describing the provisioning of service chains to users and devices on the ground. The objective of each provider in the proposed model is to establish the optimal service chain flows to manage and send to, or receive by, other providers in order to maximize its revenue while minimizing the total execution, execution request and transmission costs, under the constraints that the total costumer demand, for each service chain, are satisfied, as well as the capacity constraints. We formulate the nonlinear optimization problem as a non-cooperative game in which each player (provider) is rational and acts selfishly. In particular, we analyzed the Generalized Nash Equilibrium Problem (GNEP), and the equivalent formulation of the GNEP by means of Variational Inequality theory is also provided. Finally, an illustrative numerical example is presented and analyzed.

A Multi-UAVs’ Provider Model for the Provision of 5G Service Chains: A Game Theoretic Approach

Cappello G. M.;Colajanni G.;Daniele P.;Galluccio L.;Grasso C.;Schembra G.;Scrimali L. R. M.
2022-01-01

Abstract

In the last years, the use of Flying Ad-hoc Networks (FANET) to extend and improve the capability of 5G networks, especially in scenarios characterized by poor or completely inexistent structured networks, has been very successful. The possibility to mount, on board of an Unmanned Aerial Vehicle (UAV), a Computing Element, giving it the possibility to host virtual functions (VFs) and provide data processing services, has allowed 5G networks to be able to extend their functionalities closer to the user, in the so-called Edge Network. In this paper, we present a multi-UAVs’ providers network based model describing the provisioning of service chains to users and devices on the ground. The objective of each provider in the proposed model is to establish the optimal service chain flows to manage and send to, or receive by, other providers in order to maximize its revenue while minimizing the total execution, execution request and transmission costs, under the constraints that the total costumer demand, for each service chain, are satisfied, as well as the capacity constraints. We formulate the nonlinear optimization problem as a non-cooperative game in which each player (provider) is rational and acts selfishly. In particular, we analyzed the Generalized Nash Equilibrium Problem (GNEP), and the equivalent formulation of the GNEP by means of Variational Inequality theory is also provided. Finally, an illustrative numerical example is presented and analyzed.
2022
978-3-031-24865-8
978-3-031-24866-5
5G
Generalized Nash Equilibrium Problem
Unmanned Aerial Vehicles
Variational formulation
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/551985
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact