The climate change is strongly impacting cities, which currently have to face more frequently the effects caused by extreme weather events. Cities have a crucial role, not only as potential targets of climate vulnerability but also as the main contributor. The specific composition of people and their activities, as well as urban morphology, exacerbates heat waves because of the Urban Heat Island (UHI) effect. Climate change projections often do not include the effects of the UHI and this implies that the actual magnitude of future impacts on the health of urban residents is underestimated. One of the most pressing and unifying issues is the maintenance of comfortable outdoor conditions under rising air temperatures and increasing extreme heat events. To inform urban planners and city officials, the assessment of outdoor thermal comfort has gained remarkable interest. Nowadays, the assessment of urban climate and outdoor thermal comfort in cities is dealt with field measurements and numerical modelling. Although measurements can deliver highly accurate data, they are rather expensive and time-consuming endeavors that can only inform us about specific thermal conditions that exist at a given place and time. On the contrary, numerical modelling allows the prediction of the potential effects of urban warming in the next years in order to assess future climate scenarios as well as to grasp the spatial and temporal variability of outdoor human thermal comfort conditions. In this way, numerical modelling can be used as a predictor instrument to alert urban residents about the most heat wave-risk days. Thereby, suitable design scenarios aimed at the mitigation of the urban warming can be fine-tuned. Nowadays, most studies deal with the outdoor climate analysis of densely built-up areas using an approach based on neighborhood scale or urban Microscale. Although Microscale models allow an accurate evaluation of the effects of potential UHI mitigation strategies, they are characterized by spatial and temporal limitations. Since the urban climate is influenced by processes taking place on different scales, the urban Macroscale-based climate analysis should be adopted to evaluate the intra-urban areas climate interactions. Macroscale analysis approach is particularly interesting for the analysis of urban heat stress events distributions. In fact, the Macroscale allows limitations to be overcome the of single-station data provided by most of the meteorological stations and can represent intra-urban temperature differences at relatively small scales, which correspond to the spatial detail of information needed for the design of interventions in the urban space. An urban Macroscale analysis thus allows identification the most sensitive heat wave risk areas and planning of suitable mitigation heat stress scenarios in relation to their climate and morphological features. The objective of this research was to analyse urban microclimate and identify the potential heat stress mitigation strategies in the most risky areas at urban Macroscale level. To identify the urban areas more prone to heat stress risk, a new Local Climate Zone (LCZ) classification is proposed based on both geometrical and thermal features of the urban fabric. Urban Macroscale and Microscale simulations were run in order to appraise the differences in the outcomes (if any) and to design suitable mitigation strategies. The innovations introduced in this study were: -The analysis of outdoor microclimate parameters by means of top-down approach (from the Macroscale down to the Microscale). -Urban morphing of the rural/sub-urban climate data. -The identification of heat stress risk areas through a new Local Climate Zones (LCZs) classification. -The identification of a potential correlation (if any) between a widely used outdoor thermal comfort metrics such as the Universal Thermal Climate Index (UTCI) and heat stress risk for more vulnerable people. The research framework is divided into four sections. In the second section, the general background related to the Urban Heat Island (UHI) phenomena, their impact on the cities and vulnerable people was described. In this section, the urbanization factors that affect the formation of UHI, the causes of the physical phenomena and the effects of heat waves on the human health of urban residents, building energy needs and issues regarding outdoor thermal comfort, were discussed. Literature review of UHI mitigation strategies and their effects on the outdoor microclimate in the urban environment was carried out. In particular, the role of vegetation and cool materials in mitigating urban heat stress and how they should be applied in relation to morphological features of urban contexts was described. To this aim, the results of several studies about the effects of urban greening strategies (green roof, green façade, and street trees) and cool roofs are reported. Furthermore, the background of the approaches and methods used to analyse urban climate and outdoor thermal comfort at different scales was described. The third section describes the methodology adopted in this research. A new Local Climate Zones (LCZs) classification based on large scale analysis was carried out in order to identify the heat stress risky areas. A large scale analysis of the almost entire urban area of investigated city was carried out on a calibrated and validated Macroscale numerical model developed with the UMEP (Urban Multi-scale Environmental Predictor) tool. The most sensitive heat stress risk areas were analyzed using an approach based on Macroscale models and detailed Microscale models to define the more suitable strategies for heat stress mitigation. The numerical Microscale models of the investigated areas were calibrated and validated according to criteria explained in chapter 3. Microscale models were developed by means of ENVI-met software. Based on validated models, numerical simulations of current and mitigation scenarios were carried out in order to estimate the potential effectiveness of the proposed UHI mitigation strategies. Mitigation strategies were defined according to the morphological and geometrical features of the investigated areas. The results derived by implementation of UHI mitigation strategies in the investigated areas both at urban Microscale and Macroscale levels were discussed in section 4. Both urban Macroscale and Microscale simulations of the risky areas were compared in order to assess the reliability of the numerical modelling at large-scale. The fifth section discussed the meaningful conclusions extracted from the simulation models based on Microscale and large-scale models respectively. Furthermore, recommendations and suggestions of perspectives for further research in the future are pointed out.
Il cambiamento climatico ha un forte impatto sulle città le quali attualmente devono far fronte con maggiore frequenza agli effetti causati da eventi meteorologici estremi. Le città hanno un ruolo cruciale, non solo come potenziali vittime della vulnerabilità climatica, ma anche come principali cause. La specifica composizione delle attività umane, e la morfologia urbana contribuiscono ad esacerbare l’effetto delle ondate di calore dovute all’Isola di Calore Urbana. Le proiezioni sui cambiamenti climatici spesso non includono gli effetti dell'Isola di Calore Urbana e ciò implica una sottostima dell'entità degli impatti delle onde di calore sulla salute dei cittadini. Una delle questioni più urgenti e unificanti è il mantenimento di condizioni di confort termico in ambiente urbano in presenza di un incremento di temperatura dell'aria dovuto a eventi di calore estremo. Come strumento per informare urbanisti e autorità cittadine, la valutazione del comfort termico urbano ha suscitato notevole interesse. Attualmente, la valutazione del comfort termico urbano è affrontata mediante indagini strumentali in situ e simulazioni di modelli numerici. Sebbene indagini strumentali in situ possano fornire dati molto accurati, sono piuttosto costose e dispendiose in termini di tempo e possono solo informare su condizioni climatiche specifiche che si verificano in un determinato luogo e in un dato momento. Al contrario, la modellazione numerica consente di prevedere potenziali effetti di eventi di calore estremo, valutare scenari climatici futuri e cogliere la variabilità spaziale e temporale delle condizioni climatiche in ambiente urbano. In tal modo, la modellazione numerica può essere utilizzata come strumento predittivo per allertare i residenti sui giorni nei quali è più alto il rischio che si verifichino onde di calore più intense e conseguentemente mettere a punto opportuni scenari di progetto volti alla mitigazione del fenomeno. Attualmente, la maggior parte degli studi affronta l'analisi del clima urbano di aree densamente edificate utilizzando un approccio basato su scala di quartiere o Microscala urbana. Sebbene i modelli su Microscala consentano una valutazione accurata degli effetti di potenziali strategie di mitigazione dell’isola di calore, sono caratterizzati da limitazioni spaziali e temporali. Dal momento che il clima urbano è influenzato da processi che si svolgono a scale differenti, dovrebbe essere adottato un approccio basato sull'analisi climatica a Macroscala urbana. L'approccio a Macroscala è particolarmente interessante per l'analisi della distribuzione degli eventi di stress da calore urbano superando i limiti spaziali e temporali caratteristici delle simulazioni numeriche a Microscala urbana. Inoltre, l’analisi a Macroscala può rappresentare le differenze di temperatura tra le varie aree urbane fornendo le informazioni spaziali necessarie per la progettazione di interventi nello spazio urbano. Pertanto, un'analisi a Macroscala urbana può identificare le aree più sensibili al rischio di ondate di calore e pianificare opportuni scenari di mitigazione del rischio per la salute umana in relazione alle caratteristiche climatiche e morfologiche delle aree urbane investigate. L'obiettivo di questa ricerca è quello di analizzare il microclima urbano e identificare le potenziali strategie di mitigazione dello stress da calore nelle aree più rischio. Per identificare le aree urbane più sensibili al rischio viene proposta una nuova classificazione della Zone Climatiche Locali (LCZ) basata sulle caratteristiche geometriche e termiche del tessuto urbano. Sono state eseguite simulazioni su Macroscala e Microscala urbana al fine di valutare le differenze nei risultati (se presenti) e progettare strategie di mitigazione adeguate. Le novità introdotte in questo studio sono state: • L'analisi dei parametri del microclima “outdoor” mediante un approccio top-down (dalla Macroscala alla Microscala). • Morfaggio urbano dei dati climatici rurali/suburbani. • L'identificazione delle aree a rischio di stress termico attraverso una nuova classificazione delle Zone Climatiche Locali (LCZ). • L'identificazione di una potenziale correlazione (se presente) tra un indice di comfort termico outdoor ampiamente utilizzato, come Universal Thermal Climate Index (UTCI), e il rischio di stress da calore per la salute delle persone più vulnerabili. La struttura della ricerca si articola in quattro sezioni. Nella seconda sezione è stato descritto il contesto generale relativo al fenomeno Isola di Calore Urbana, il suo impatto sulle città e sulle persone più vulnerabili. In questa sezione sono stati descritte le cause del fenomeno fisico e gli effetti delle onde di calore indotte dall’isola di calore urbana sulla salute dei cittadini, sul fabbisogno energetico degli edifici e sul comfort termico “outdoor” in ambiente urbano. È stata effettuata una ricerca bibliografica relativa alle strategie di mitigazione del fenomeno Isola di Calore Urbana e ai loro effetti sul microclima “outdoor”. In particolare, è stato descritto il ruolo della vegetazione e dei materiali “cool” nella mitigazione dello stress da calore urbano e come tali soluzioni sono state applicati in relazione alle caratteristiche morfologiche in ambiente urbano. A tal fine sono stati riportati i risultati di diversi studi sugli effetti delle strategie di inverdimento urbano (tetti verdi, facciate verdi e alberi) e cool roof sul microclima “outdoor”. Inoltre, sono stati descritti gli approcci e i metodi attualmente utilizzati per analizzare il clima urbano e il comfort termico “outdoor” a differenti scale urbane. La terza sezione descrive la metodologia adottata per lo sviluppo della presente ricerca. È stata effettuata una nuova classificazione delle Zone Climatiche Locali (LCZ) basata su analisi a larga scala al fine di identificare le aree più sensibili al rischio. Un'analisi su larga scala di gran parte dell’area urbana della città investigata è stata effettuata con un modello numerico sviluppato mediante il software UMEP (Urban Multi-scale Environmental Predictor) opportunamente calibrato e validato. Le aree più sensibili al rischio di stress da calore sono state analizzate utilizzando l’approccio a Macroscala e quello a Microscala urbana. L’analisi a Microscala urbana delle aree investigate è stata condotta con il software ENVI-met. Strategie di mitigazione delle onde di calore sono state definite in base alle caratteristiche morfologiche e geometriche delle aree investigate. Sulla base dei modelli validati, sono state effettuate simulazioni numeriche rispettivamente negli scenari attuali e di mitigazione al fine di stimare la potenziale efficacia delle strategie proposte. Successivamente, sono stati confrontati i risultati delle simulazioni numeriche condotte rispettivamente a Macroscala e a Microscala urbana delle aree a rischio al fine di valutare l'affidabilità della modellazione numerica su Macroscala. Nella quinta sezione sono riportate le conclusioni sui i risultati dei modelli numerici sviluppati su Macroscala e Microscala urbana. Inoltre, sono state evidenziate le raccomandazioni e i suggerimenti utili per perfezionare i modelli di simulazione e sviluppare ulteriori future ricerche.
Strategie di rigenerazione urbana e soluzioni progettuali sostenibili per la mitigazione del fenomeno Isola di Calore Urbana e per il miglioramento del benessere termo-igrometrico outdoor delle città del Mediterraneo / Detommaso, Maurizio. - (2022 May 03).
Strategie di rigenerazione urbana e soluzioni progettuali sostenibili per la mitigazione del fenomeno Isola di Calore Urbana e per il miglioramento del benessere termo-igrometrico outdoor delle città del Mediterraneo
DETOMMASO, MAURIZIO
2022-05-03
Abstract
The climate change is strongly impacting cities, which currently have to face more frequently the effects caused by extreme weather events. Cities have a crucial role, not only as potential targets of climate vulnerability but also as the main contributor. The specific composition of people and their activities, as well as urban morphology, exacerbates heat waves because of the Urban Heat Island (UHI) effect. Climate change projections often do not include the effects of the UHI and this implies that the actual magnitude of future impacts on the health of urban residents is underestimated. One of the most pressing and unifying issues is the maintenance of comfortable outdoor conditions under rising air temperatures and increasing extreme heat events. To inform urban planners and city officials, the assessment of outdoor thermal comfort has gained remarkable interest. Nowadays, the assessment of urban climate and outdoor thermal comfort in cities is dealt with field measurements and numerical modelling. Although measurements can deliver highly accurate data, they are rather expensive and time-consuming endeavors that can only inform us about specific thermal conditions that exist at a given place and time. On the contrary, numerical modelling allows the prediction of the potential effects of urban warming in the next years in order to assess future climate scenarios as well as to grasp the spatial and temporal variability of outdoor human thermal comfort conditions. In this way, numerical modelling can be used as a predictor instrument to alert urban residents about the most heat wave-risk days. Thereby, suitable design scenarios aimed at the mitigation of the urban warming can be fine-tuned. Nowadays, most studies deal with the outdoor climate analysis of densely built-up areas using an approach based on neighborhood scale or urban Microscale. Although Microscale models allow an accurate evaluation of the effects of potential UHI mitigation strategies, they are characterized by spatial and temporal limitations. Since the urban climate is influenced by processes taking place on different scales, the urban Macroscale-based climate analysis should be adopted to evaluate the intra-urban areas climate interactions. Macroscale analysis approach is particularly interesting for the analysis of urban heat stress events distributions. In fact, the Macroscale allows limitations to be overcome the of single-station data provided by most of the meteorological stations and can represent intra-urban temperature differences at relatively small scales, which correspond to the spatial detail of information needed for the design of interventions in the urban space. An urban Macroscale analysis thus allows identification the most sensitive heat wave risk areas and planning of suitable mitigation heat stress scenarios in relation to their climate and morphological features. The objective of this research was to analyse urban microclimate and identify the potential heat stress mitigation strategies in the most risky areas at urban Macroscale level. To identify the urban areas more prone to heat stress risk, a new Local Climate Zone (LCZ) classification is proposed based on both geometrical and thermal features of the urban fabric. Urban Macroscale and Microscale simulations were run in order to appraise the differences in the outcomes (if any) and to design suitable mitigation strategies. The innovations introduced in this study were: -The analysis of outdoor microclimate parameters by means of top-down approach (from the Macroscale down to the Microscale). -Urban morphing of the rural/sub-urban climate data. -The identification of heat stress risk areas through a new Local Climate Zones (LCZs) classification. -The identification of a potential correlation (if any) between a widely used outdoor thermal comfort metrics such as the Universal Thermal Climate Index (UTCI) and heat stress risk for more vulnerable people. The research framework is divided into four sections. In the second section, the general background related to the Urban Heat Island (UHI) phenomena, their impact on the cities and vulnerable people was described. In this section, the urbanization factors that affect the formation of UHI, the causes of the physical phenomena and the effects of heat waves on the human health of urban residents, building energy needs and issues regarding outdoor thermal comfort, were discussed. Literature review of UHI mitigation strategies and their effects on the outdoor microclimate in the urban environment was carried out. In particular, the role of vegetation and cool materials in mitigating urban heat stress and how they should be applied in relation to morphological features of urban contexts was described. To this aim, the results of several studies about the effects of urban greening strategies (green roof, green façade, and street trees) and cool roofs are reported. Furthermore, the background of the approaches and methods used to analyse urban climate and outdoor thermal comfort at different scales was described. The third section describes the methodology adopted in this research. A new Local Climate Zones (LCZs) classification based on large scale analysis was carried out in order to identify the heat stress risky areas. A large scale analysis of the almost entire urban area of investigated city was carried out on a calibrated and validated Macroscale numerical model developed with the UMEP (Urban Multi-scale Environmental Predictor) tool. The most sensitive heat stress risk areas were analyzed using an approach based on Macroscale models and detailed Microscale models to define the more suitable strategies for heat stress mitigation. The numerical Microscale models of the investigated areas were calibrated and validated according to criteria explained in chapter 3. Microscale models were developed by means of ENVI-met software. Based on validated models, numerical simulations of current and mitigation scenarios were carried out in order to estimate the potential effectiveness of the proposed UHI mitigation strategies. Mitigation strategies were defined according to the morphological and geometrical features of the investigated areas. The results derived by implementation of UHI mitigation strategies in the investigated areas both at urban Microscale and Macroscale levels were discussed in section 4. Both urban Macroscale and Microscale simulations of the risky areas were compared in order to assess the reliability of the numerical modelling at large-scale. The fifth section discussed the meaningful conclusions extracted from the simulation models based on Microscale and large-scale models respectively. Furthermore, recommendations and suggestions of perspectives for further research in the future are pointed out.File | Dimensione | Formato | |
---|---|---|---|
Tesi di dottorato - DETOMMASO MAURIZIO 20220217095420.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
26.14 MB
Formato
Adobe PDF
|
26.14 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.