Quick and new actions are needed to fight climate change. European legislators are trying to solve the problem in the short or medium term. One of the European actions is to promote the electrification of vehicles. This leads to an increasing demand for the production of electronic devices and the expansion of the fabrication plant (FAB) in European countries. STMicroelectronics, the largest microelectronic company in Europe, is actively pushing the advancement of high-performance and energy-efficient devices. In particular, this thesis focuses on the evolution of a trench MOSFET device and its initial stages of development. The novelty of the work lies in the adoption of 4H-SiC as a material to obtain better performance and withstand higher voltages. The adoption of 4H-SiC material, instead of the well-established silicon, poses many challenges due to its chemical inertia, high hardness, and poor state of the art. 4H-SiC has only recently been used in microelectronics and is still a material to be fully discovered. The problems encountered in the early stages of trench MOSFET development were specifically investigated and resolved by morphological and surface chemical analysis. The main characterization techniques used were Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) for morphological evaluation, and X-ray Photoelectron Spectroscopy (XPS) for qualitative and quantitative evaluation of the surface chemical composition. In particular, micrographs were used to perform image analysis and to obtain important pieces of evidence. Although 4H-SiC is chemically inert and the microelectronic industry primarily focuses on physical dry etching techniques, investigations of wet chemical etching approaches have been conducted on 4H-SiC. For this purpose, Electrochemical Etching (ECE) and Metal Assisted Chemical Etching (MACE) were effective for various applications on 4H-SiC. These methods of etching might be useful in the future for batch processing and speeding up the production of the devices. In addition, the ECE application provides an opportunity to study the top-down production of particles of 4H-SiC with potential applications in biomedical, mechanical, and sensor technology. The doctoral thesis is categorized into physical and chemical approaches for 4H-SiC etching, and these approaches will be comprehensively discussed in this text. In virtue of its physicochemical characteristics, silicon carbide has launched numerous challenges and offers prospects for future academic and industrial research opportunities.
La lotta al cambiamento climatico deve essere supportata da nuove e rapide azioni. I legislatori europei hanno messo in atto azioni nel breve o medio termine. Una delle strategie europee consiste nel promuovere l'elettrificazione dei veicoli. Ciò comporta un aumento della domanda di produzione di dispositivi elettronici e l'espansione degli impianti di fabbricazione (FAB) nei Paesi europei. STMicroelectronics, la più grande azienda di microelettronica in Europa, sta spingendo attivamente il progresso di dispositivi ad alte prestazioni e ad alta efficienza energetica. In particolare, questa tesi pone le fondamenta sulla ricerca e sviluppo di un dispositivo MOSFET a trincea e sulle sue fasi iniziali di studio. La novità dello studio risiede nell'adozione del 4H-SiC come materiale per ottenere migliori prestazioni e sopportare tensioni più elevate. La scelta del materiale 4H-SiC, al posto del consolidato silicio, pone molte sfide a causa della sua inerzia chimica, dell'elevata durezza e dello scarso stato dell'arte. Il 4H-SiC è stato utilizzato solo di recente nella microelettronica ed è tuttora un materiale da studiare e scoprire completamente. I problemi riscontrati nelle prime fasi di sviluppo dei MOSFET a trincea sono stati studiati e risolti in modo specifico mediante analisi morfologiche e chimiche di superficie. Le principali tecniche di caratterizzazione adoperate sono la microscopia elettronica a scansione (SEM) e la microscopia a forza atomica (AFM) per la valutazione morfologica e la spettroscopia fotoelettrica a raggi X (XPS) per la valutazione qualitativa e quantitativa della composizione chimica superficiale. In particolare, le micrografie da SEM sono state utilizzate per eseguire l'analisi delle immagini e ottenere importanti elementi di prova. Sebbene il 4H-SiC sia chimicamente inerte e l'industria microelettronica si concentri principalmente sulle tecniche di “dry etching”, nella presente tesi sono state condotte indagini sulle tecniche di “etching” chimiche in soluzione sul 4H-SiC. A tale scopo, le tecniche di “etching elettrochimico” (ECE) e “metal assisted chemical etching” (MACE) sono risultate efficaci per varie applicazioni su 4H-SiC. Questi metodi di incisione potrebbero essere utili in futuro per l'elaborazione in lotti e per accelerare la produzione di dispositivi. Inoltre, l'applicazione ECE offre l'opportunità di studiare la produzione per approccio “top-down” di particelle in 4H-SiC con potenziali applicazioni nella tecnologia biomedica, meccanica e dei sensori. La tesi di dottorato è suddivisa in approcci fisici e chimici per l'incisione del 4H-SiC, che saranno discussi in modo esaustivo in questo testo. In virtù delle sue caratteristiche fisico-chimiche, il carburo di silicio ha lanciato numerose sfide e offre prospettive per future opportunità di ricerca accademica e industriale.
“Deep trench etch” di 4H-SiC: studio di approcci chimici e fisici per il recupero dei danni superficiali / Barcellona, Matteo. - (2023 Dec 19).
“Deep trench etch” di 4H-SiC: studio di approcci chimici e fisici per il recupero dei danni superficiali.
BARCELLONA, MATTEO
2023-12-19
Abstract
Quick and new actions are needed to fight climate change. European legislators are trying to solve the problem in the short or medium term. One of the European actions is to promote the electrification of vehicles. This leads to an increasing demand for the production of electronic devices and the expansion of the fabrication plant (FAB) in European countries. STMicroelectronics, the largest microelectronic company in Europe, is actively pushing the advancement of high-performance and energy-efficient devices. In particular, this thesis focuses on the evolution of a trench MOSFET device and its initial stages of development. The novelty of the work lies in the adoption of 4H-SiC as a material to obtain better performance and withstand higher voltages. The adoption of 4H-SiC material, instead of the well-established silicon, poses many challenges due to its chemical inertia, high hardness, and poor state of the art. 4H-SiC has only recently been used in microelectronics and is still a material to be fully discovered. The problems encountered in the early stages of trench MOSFET development were specifically investigated and resolved by morphological and surface chemical analysis. The main characterization techniques used were Scanning Electron Microscopy (SEM) and Atomic Force Microscopy (AFM) for morphological evaluation, and X-ray Photoelectron Spectroscopy (XPS) for qualitative and quantitative evaluation of the surface chemical composition. In particular, micrographs were used to perform image analysis and to obtain important pieces of evidence. Although 4H-SiC is chemically inert and the microelectronic industry primarily focuses on physical dry etching techniques, investigations of wet chemical etching approaches have been conducted on 4H-SiC. For this purpose, Electrochemical Etching (ECE) and Metal Assisted Chemical Etching (MACE) were effective for various applications on 4H-SiC. These methods of etching might be useful in the future for batch processing and speeding up the production of the devices. In addition, the ECE application provides an opportunity to study the top-down production of particles of 4H-SiC with potential applications in biomedical, mechanical, and sensor technology. The doctoral thesis is categorized into physical and chemical approaches for 4H-SiC etching, and these approaches will be comprehensively discussed in this text. In virtue of its physicochemical characteristics, silicon carbide has launched numerous challenges and offers prospects for future academic and industrial research opportunities.File | Dimensione | Formato | |
---|---|---|---|
PhD thesis_Barcellona Matteo_Chemical Sciences_XXXVI.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
10.37 MB
Formato
Adobe PDF
|
10.37 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.