We present a finite-difference numerical method to solve systems of hyperbolic conservation laws in domains with arbitrary shapes. The curved boundary is immersed in a uniform Cartesian grid and implicitly defined by a level-set function. The method is based on a semi-implicit discretization of the differential equations coupled with a ghost-point approach to impose the boundary conditions. The method is designed to be straightforwardly extended to higher order accuracy. The semi-implicit approach alleviates the stability restriction on the time step that is associated with acoustic waves in explicit methods, while preventing the numerical dissipation introduced in fully implicit methods. Several numerical tests to solve the Euler equations of gas dynamics past steady obstacles with arbitrary shapes are presented to show the efficiency of the semi-implicit method and the efficacy of the ghost-point approach.

Semi-implicit Finite-Difference Methods for Compressible Gas Dynamics with Curved Boundaries: A Ghost-Point Approach

Coco, Armando;Stissi, Santina Chiara
2023-01-01

Abstract

We present a finite-difference numerical method to solve systems of hyperbolic conservation laws in domains with arbitrary shapes. The curved boundary is immersed in a uniform Cartesian grid and implicitly defined by a level-set function. The method is based on a semi-implicit discretization of the differential equations coupled with a ghost-point approach to impose the boundary conditions. The method is designed to be straightforwardly extended to higher order accuracy. The semi-implicit approach alleviates the stability restriction on the time step that is associated with acoustic waves in explicit methods, while preventing the numerical dissipation introduced in fully implicit methods. Several numerical tests to solve the Euler equations of gas dynamics past steady obstacles with arbitrary shapes are presented to show the efficiency of the semi-implicit method and the efficacy of the ghost-point approach.
2023
9783031298745
9783031298752
Boundary conditions for gas dynamics
Finite-difference method
Ghost-point extrapolation
Immersed boundary method
Unfitted boundary method
Uniform Cartesian grid
File in questo prodotto:
File Dimensione Formato  
CocoStissi_without_brand.pdf

solo gestori archivio

Tipologia: Documento in Post-print
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 1.93 MB
Formato Adobe PDF
1.93 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/649959
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 0
  • ???jsp.display-item.citation.isi??? ND
social impact