Agricultural and food industries generate substantial waste that, remaining underexploited, entails environmental, economic, and social issues. The shells of Pistacia vera, Prunus dulcis, Corylus avellana, and Juglans regia species represent the most abundant by-products and have the potential to be further processed into value-added nutraceutical ingredients and other innovative materials. In this thesis, dry fruit shells have been employed as sources of valuable bioactive compounds. Specifically, the Response Surface Methodology (RSM) coupled with Box-Behnken design (BBD) models were adopted to optimize entirely eco-sustainable microwave-assisted extraction (MAE) protocols. The optimized shell extracts exhibited the highest total phenolic content (TPC) and antioxidant/antiradical activity. Furthermore, in this thesis, MAE method was applied for the first time to recover antioxidants from pistachio and hazelnut shells. Although MAE was previously employed to extract bioactive compounds from almond and walnut shells, the herein optimized MAE conditions led to higher phenolics recovery rates. Moreover, MAE protocols were carefully designed to support their application at an industrial level, where the extraction of natural products using microwave irradiation is already a reality. The phytochemical composition of the optimized shell extracts was determined by hyphenated techniques, namely high-performance liquid chromatography/electrospray ionization ion-trap tandem mass spectrometric (HPLC/ESI-MS/MS) analyses. A thorough qualitative and quantitative analysis of mass spectrometric data allowed the identification of phenolic compounds and lipids as the predominant organic constituents in all the extracts. Remarkably, the phytochemical composition of Pistacia vera shells has never been reported before. Furthermore, the abundant presence of alkyl phenols, namely anacardic acids (AAs), in both P. vera and J. regia shells was herein uncovered for the first time, highlighting such biomasses as novel sources of bioactive AAs. Unique insights into the potential biological properties of the optimized shell extracts were provided in this thesis. Particularly, their reactive oxygen species (ROS) scavenging capacity, their anti-glycation properties, and their inhibitory behaviour towards pancreatic lipase, α-glucosidase, α-amylase, and tyrosinase, molecular targets of notable therapeutic importance, were in vitro investigated. Considering the remarkable anti-glycation and hypoglycemic properties observed for the AAs-rich extracts from P. vera and J. regia shells, AAs were screened, for the first time, as novel natural-derived drug candidates for the treatment of type 2 diabetes mellitus (T2DM). Noteworthy, AAs exhibited strong anti-glycation properties and higher hypoglycemic activity than the anti-diabetic drug acarbose, used as a positive control. In silico molecular modelling was consistent with the results from the in vitro bioassays. Moreover, in vitro kinetics of inhibition and fluorescence quenching experiments provided unique findings on AAs interaction with the targeted enzymes. MTT assays were performed to assess the biocompatibility of the optimized shell extracts on human intestinal (Caco-2 and HT29-MTX) and buccal (TR146 and HSC-3) cell lines. This represented the first study reporting the effects of compounds from dry fruit shells on the viability of intestinal and buccal cells. The metabolic fate of the optimized extracts from P. vera, P. dulcis, and C. avellana shells was estimated through in vitro simulated gastrointestinal digestion followed by untargeted LC-ESI-LTQ-Orbitrap-MS metabolomic analyses of the resulting oral, gastric and intestinal digests. The changes in the extracts’ phytochemical composition, antioxidant/antiradical activity (FRAP, DPPH•, and ABTS•+), and hypoglycemic properties (α-glucosidase and α-amylase inhibition) occurred after the gastrointestinal digestion simulation were widely explored providing novel insights into compounds’ bioaccessibility, hence contributing to expand the value of dry fruit shells into the field of food nutrition. Lastly, in vitro cell-based permeability models were adopted to assess the permeability of the gastrointestinal epithelium and buccal mucosa to the optimized shell extracts. Further green applications were investigated for walnut and pistachio shells. The optimized extract from walnut shells (OWS) was loaded into biodegradable polylactide (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) polymeric blends. The resulting bio-film formulation showed improved performances in terms of UV-light resistance, antioxidant capacity, and mechanical properties. These results support the use of such PLA/PBAT-OWS blends as eco-friendly food packaging and bio-plastics. Another approach involved utilizing exhausted pistachio shells, leftover from the MAE treatment, as carbonaceous precursors for their transformation into activated carbons (ACs). Nowadays, ACs have multipurpose applications, such as electrode and battery production, water purification from heavy metals, and air pollution control. Hence, the proposed strategy introduces even exhausted pistachio shells as equally promising biomasses for the development of several clean-label materials with broad environmental and industrial relevance. All the findings shown in this thesis encourage the employment of dry fruit shells for the sustainable recovery of valuable bioactive compounds and antioxidants that, within the framework of a circular economy, can be included in nutraceutical formulations and other innovative materials.
Le industrie agroalimentari generano un’ingente quantità di rifiuti che, rimanendo insufficientemente sfruttati, comportano problematiche ambientali, economiche e sociali. I gusci delle specie Pistacia vera, Prunus dulcis, Corylus avellana e Juglans regia rappresentano i sottoprodotti più abbondanti e possiedono il potenziale per essere ulteriormente trasformati in ingredienti nutraceutici ad alto valore aggiunto e altri materiali innovativi. In questa tesi, i gusci di frutta secca sono stati impiegati come fonti di preziosi composti bioattivi. In particolare, la metodologia della Superficie di Risposta (RSM) accoppiata a modelli di progettazione Box-Behnken (BBD) sono stati utilizzati per ottimizzare protocolli di estrazione assistita da microonde (MAE) interamente ecosostenibili. Gli estratti di gusci ottimizzati hanno mostrato il più alto contenuto fenolico totale (TPC) e attività antiossidante/antiradicalica. Inoltre, in questa tesi, il metodo MAE è stato utilizzato per la prima volta per recuperare antiossidanti dai gusci di pistacchi e nocciole. Sebbene il MAE fosse stato precedentemente utilizzato per estrarre composti bioattivi dai gusci di mandorle e noci, le condizioni di MAE qui ottimizzate hanno portato a tassi di recupero di composti fenolici più elevati. Inoltre, i protocolli MAE sono stati progettati con attenzione al fine di suggerire il loro impiego a livello industriale, dove l'estrazione di prodotti naturali tramite irradiazione a microonde è già una realtà. La composizione fitochimica degli estratti ottimizzati è stata determinata mediante l’uso di tecniche combinate, vale a dire mediante cromatografia liquida ad alte prestazioni/spettrometria di massa tandem con trappola ionica a ionizzazione elettrospray (HPLC/ESI-MS/MS). Un’approfondita analisi qualitativa e quantitativa dei dati spettrometrici di massa ha permesso di identificare i composti fenolici e i lipidi come i costituenti organici predominanti in tutti gli estratti. Eccezionalmente, la composizione fitochimica dei gusci di Pistacia vera non era stata mai riportata prima d’ora. Inoltre, l'abbondante presenza di fenoli alchilici, ovvero acidi anacardici (AA), nei gusci di P. vera e J. regia è stata qui scoperta per la prima volta, evidenziando tali biomasse come nuove fonti di AA bioattivi. Questa tesi ha fornito intuizioni uniche sulle potenziali proprietà biologiche degli estratti di gusci ottimizzati. Nello specifico, la loro capacità di neutralizzare le specie reattive dell'ossigeno (ROS), le loro proprietà anti-glicazione, e il loro comportamento inibitorio nei confronti della lipasi pancreatica, dell'α-glucosidasi, dell'α-amilasi e della tirosinasi, bersagli molecolari di notevole importanza terapeutica, sono stati studiati in vitro. Considerando le notevoli proprietà anti-glicazione e ipoglicemizzanti osservate per gli estratti ricchi di AAs ottenuti dai gusci di P. vera e J. regia, gli AAs sono stati testati, per la prima volta, come nuovi candidati farmaci di origine naturale per il trattamento del diabete mellito di tipo 2 (T2DM). Degno di nota, gli AAs hanno mostrato forti proprietà anti-glicazione e un'attività ipoglicemizzante superiore rispetto al farmaco antidiabetico acarbosio, utilizzato come controllo positivo. La modellazione molecolare in silico ha mostrato risultati coerenti con quelli dei saggi biologici effettuati in vitro. Inoltre, cinetiche di inibizione ed esperimenti di quenching della fluorescenza hanno fornito risultati unici riguardanti l'interazione degli AAs con i rispettivi target enzimatici. I saggi MTT sono stati svolti per valutare la biocompatibilità degli estratti su linee cellulari umane intestinali (Caco-2 e HT29-MTX) e buccali (TR146 e HSC-3). Questo ha rappresentato il primo studio riguardante gli effetti di composti derivati dai gusci di frutta secca sulla vitalità di cellule intestinali e buccali. Il destino metabolico degli estratti ottimizzati ottenuti dai gusci di P. vera, P. dulcis e C. avellana è stato stimato tramite digestione gastrointestinale simulata in vitro seguita dall’analisi metabolomica mediante LC-ESI-LTQ-Orbitrap-MS delle risultanti frazioni digerite orali, gastriche e intestinali. I cambiamenti nella composizione fitochimica degli estratti, nell'attività antiossidante/antiradicalica (FRAP, DPPH• e ABTS•+) e nelle proprietà ipoglicemiche (inibizione di α-glucosidasi e α-amilasi) avvenuti dopo la simulazione della digestione gastrointestinale sono stati ampiamente esplorati, fornendo nuove intuizioni circa la bioaccessibilità dei composti, e contribuendo quindi ad ampliare il valore dei gusci di frutta secca nel campo della nutrizione alimentare. Infine, modelli di permeabilità cellulare in vitro sono stati adottati per valutare la permeabilità dell'epitelio gastrointestinale e della mucosa orale agli estratti ottimizzati. Ulteriori applicazioni green sono state investigate per i gusci di noce e pistacchio. L'estratto ottimizzato dai gusci di noce (OWS) è stato caricato in miscele polimeriche biodegradabili di polilattide (PLA)/poli (adipato-co-tereftalato di butilene) (PBAT). La formulazione del bio-film risultante ha mostrato migliori prestazioni in termini di resistenza alla luce UV, capacità antiossidanti e proprietà meccaniche. Questi risultati supportano l'uso di tali miscele di PLA/PBAT-OWS come imballaggi alimentari e bioplastiche ecocompatibili. Un altro approccio ha previsto l'utilizzo dei gusci di pistacchio esausti, rimanenti dal trattamento MAE, come precursori carboniosi per la loro trasformazione in carboni attivi (ACs). Attualmente, gli ACs trovano applicazione in molteplici ambiti, come la produzione di elettrodi e batterie, la purificazione dell'acqua dai metalli pesanti e il controllo dell'inquinamento dell’aria. Dunque, la strategia proposta introduce anche i gusci di pistacchio esausti come biomasse altrettanto promettenti per lo sviluppo di diversi materiali dotati di etichetta pulita, dall’ampia rilevanza ambientale e industriale. Tutti i risultati mostrati in questa tesi incoraggiano l'utilizzo dei gusci di frutta secca per il recupero sostenibile di preziosi composti bioattivi e antiossidanti che, nel contesto di un’economia circolare, possono essere inclusi in formulazioni nutraceutiche e altri materiali innovativi.
Exploitation of agricultural and food wastes: from the recovery of bioactive compounds for nutraceutical applications to the production of innovative materials [Valorizzazione di scarti agricoli ed alimentari: dal recupero di composti bioattivi per applicazioni nutraceutiche alla produzione di materiali innovativi] / Maccarronello, Anna Elisabetta. - (2025 Feb 27).
Exploitation of agricultural and food wastes: from the recovery of bioactive compounds for nutraceutical applications to the production of innovative materials [Valorizzazione di scarti agricoli ed alimentari: dal recupero di composti bioattivi per applicazioni nutraceutiche alla produzione di materiali innovativi]
Maccarronello, Anna Elisabetta
2025-02-27
Abstract
Agricultural and food industries generate substantial waste that, remaining underexploited, entails environmental, economic, and social issues. The shells of Pistacia vera, Prunus dulcis, Corylus avellana, and Juglans regia species represent the most abundant by-products and have the potential to be further processed into value-added nutraceutical ingredients and other innovative materials. In this thesis, dry fruit shells have been employed as sources of valuable bioactive compounds. Specifically, the Response Surface Methodology (RSM) coupled with Box-Behnken design (BBD) models were adopted to optimize entirely eco-sustainable microwave-assisted extraction (MAE) protocols. The optimized shell extracts exhibited the highest total phenolic content (TPC) and antioxidant/antiradical activity. Furthermore, in this thesis, MAE method was applied for the first time to recover antioxidants from pistachio and hazelnut shells. Although MAE was previously employed to extract bioactive compounds from almond and walnut shells, the herein optimized MAE conditions led to higher phenolics recovery rates. Moreover, MAE protocols were carefully designed to support their application at an industrial level, where the extraction of natural products using microwave irradiation is already a reality. The phytochemical composition of the optimized shell extracts was determined by hyphenated techniques, namely high-performance liquid chromatography/electrospray ionization ion-trap tandem mass spectrometric (HPLC/ESI-MS/MS) analyses. A thorough qualitative and quantitative analysis of mass spectrometric data allowed the identification of phenolic compounds and lipids as the predominant organic constituents in all the extracts. Remarkably, the phytochemical composition of Pistacia vera shells has never been reported before. Furthermore, the abundant presence of alkyl phenols, namely anacardic acids (AAs), in both P. vera and J. regia shells was herein uncovered for the first time, highlighting such biomasses as novel sources of bioactive AAs. Unique insights into the potential biological properties of the optimized shell extracts were provided in this thesis. Particularly, their reactive oxygen species (ROS) scavenging capacity, their anti-glycation properties, and their inhibitory behaviour towards pancreatic lipase, α-glucosidase, α-amylase, and tyrosinase, molecular targets of notable therapeutic importance, were in vitro investigated. Considering the remarkable anti-glycation and hypoglycemic properties observed for the AAs-rich extracts from P. vera and J. regia shells, AAs were screened, for the first time, as novel natural-derived drug candidates for the treatment of type 2 diabetes mellitus (T2DM). Noteworthy, AAs exhibited strong anti-glycation properties and higher hypoglycemic activity than the anti-diabetic drug acarbose, used as a positive control. In silico molecular modelling was consistent with the results from the in vitro bioassays. Moreover, in vitro kinetics of inhibition and fluorescence quenching experiments provided unique findings on AAs interaction with the targeted enzymes. MTT assays were performed to assess the biocompatibility of the optimized shell extracts on human intestinal (Caco-2 and HT29-MTX) and buccal (TR146 and HSC-3) cell lines. This represented the first study reporting the effects of compounds from dry fruit shells on the viability of intestinal and buccal cells. The metabolic fate of the optimized extracts from P. vera, P. dulcis, and C. avellana shells was estimated through in vitro simulated gastrointestinal digestion followed by untargeted LC-ESI-LTQ-Orbitrap-MS metabolomic analyses of the resulting oral, gastric and intestinal digests. The changes in the extracts’ phytochemical composition, antioxidant/antiradical activity (FRAP, DPPH•, and ABTS•+), and hypoglycemic properties (α-glucosidase and α-amylase inhibition) occurred after the gastrointestinal digestion simulation were widely explored providing novel insights into compounds’ bioaccessibility, hence contributing to expand the value of dry fruit shells into the field of food nutrition. Lastly, in vitro cell-based permeability models were adopted to assess the permeability of the gastrointestinal epithelium and buccal mucosa to the optimized shell extracts. Further green applications were investigated for walnut and pistachio shells. The optimized extract from walnut shells (OWS) was loaded into biodegradable polylactide (PLA)/poly (butylene adipate-co-terephthalate) (PBAT) polymeric blends. The resulting bio-film formulation showed improved performances in terms of UV-light resistance, antioxidant capacity, and mechanical properties. These results support the use of such PLA/PBAT-OWS blends as eco-friendly food packaging and bio-plastics. Another approach involved utilizing exhausted pistachio shells, leftover from the MAE treatment, as carbonaceous precursors for their transformation into activated carbons (ACs). Nowadays, ACs have multipurpose applications, such as electrode and battery production, water purification from heavy metals, and air pollution control. Hence, the proposed strategy introduces even exhausted pistachio shells as equally promising biomasses for the development of several clean-label materials with broad environmental and industrial relevance. All the findings shown in this thesis encourage the employment of dry fruit shells for the sustainable recovery of valuable bioactive compounds and antioxidants that, within the framework of a circular economy, can be included in nutraceutical formulations and other innovative materials.| File | Dimensione | Formato | |
|---|---|---|---|
|
thesis_anna_finale.pdf
accesso aperto
Tipologia:
Tesi di dottorato
Licenza:
PUBBLICO - Pubblico con Copyright
Dimensione
16.91 MB
Formato
Adobe PDF
|
16.91 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.


