The paradigm of Cellular Non-linear Networks is ubiquitously applied in different research fields. In this chapter the breakthrough in bio-robotics and brain science research is focused. In particular the implementation of CNN-based CPGs is discussed proposing different implementations on bio-inspired robots: hexapods, lamprey-like structures, crab- inspired platforms and others. Furthermore the locomotion control system has been extended following a bottom-up procedure to include higher cognitive capabilities. The ...

Contributions of Cnn to Bio-Robotics and Brain Science

ARENA, Paolo Pietro;
2013-01-01

Abstract

The paradigm of Cellular Non-linear Networks is ubiquitously applied in different research fields. In this chapter the breakthrough in bio-robotics and brain science research is focused. In particular the implementation of CNN-based CPGs is discussed proposing different implementations on bio-inspired robots: hexapods, lamprey-like structures, crab- inspired platforms and others. Furthermore the locomotion control system has been extended following a bottom-up procedure to include higher cognitive capabilities. The ...
2013
9789814434805
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/69756
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 2
  • ???jsp.display-item.citation.isi??? 2
social impact