The review focuses on the role of ionic or ionisable single isomer derivatives (SIDs) of cyclodextrins on the separation of chiral analytes in capillary electrophoresis (CE), covering the period since the year 2000. The advantages of using pure compounds are discussed, as well as the ways to optimise the separations in the context of a rational approach to these techniques. Specific attention is paid to the modulation of the selector-analyte interaction. The advantage due to a detailed knowledge of equilibria occurring in solution during the CE run is underlined, particularly in the case of the presence of metal complexes, as occurs in chiral ligand exchange capillary electrophoresis (CLECE). (c) 2009 Elsevier B.V. All rights reserved.

The review focuses on the role of ionic or ionisable single isomer derivatives (SIDs) of cyclodextrins on the separation of chiral analytes in capillary electrophoresis (CE), covering the period since the year 2000. The advantages of using pure compounds are discussed, as well as the ways to optimise the separations in the context of a rational approach to these techniques. Specific attention is paid to the modulation of the selector-analyte interaction. The advantage due to a detailed knowledge of equilibria occurring in solution during the CE run is underlined, particularly in the case of the presence of metal complexes, as occurs in chiral ligand exchange capillary electrophoresis (CLECE). (c) 2009 Elsevier B.V. All rights reserved.

Application of charged single isomer derivatives of cyclodextrins in capillary electrophoresis for chiral analysis

CUCINOTTA, Vincenzo;CONTINO, Annalinda;GIUFFRIDA, ALESSANDRO;MACCARRONE, Giuseppe;
2010-01-01

Abstract

The review focuses on the role of ionic or ionisable single isomer derivatives (SIDs) of cyclodextrins on the separation of chiral analytes in capillary electrophoresis (CE), covering the period since the year 2000. The advantages of using pure compounds are discussed, as well as the ways to optimise the separations in the context of a rational approach to these techniques. Specific attention is paid to the modulation of the selector-analyte interaction. The advantage due to a detailed knowledge of equilibria occurring in solution during the CE run is underlined, particularly in the case of the presence of metal complexes, as occurs in chiral ligand exchange capillary electrophoresis (CLECE). (c) 2009 Elsevier B.V. All rights reserved.
2010
The review focuses on the role of ionic or ionisable single isomer derivatives (SIDs) of cyclodextrins on the separation of chiral analytes in capillary electrophoresis (CE), covering the period since the year 2000. The advantages of using pure compounds are discussed, as well as the ways to optimise the separations in the context of a rational approach to these techniques. Specific attention is paid to the modulation of the selector-analyte interaction. The advantage due to a detailed knowledge of equilibria occurring in solution during the CE run is underlined, particularly in the case of the presence of metal complexes, as occurs in chiral ligand exchange capillary electrophoresis (CLECE). (c) 2009 Elsevier B.V. All rights reserved.
Capillary electrophoresis; Cyclodextrins; Chiral separation; Ligand exchange capillary electrophoresis
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/10012
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 85
  • ???jsp.display-item.citation.isi??? 77
social impact