Poly(ADP-ribose) polymerases (PARPs) play a crucial role in DNA damage surveillance through their nick sensor functions. Since PARPs' over activation leads to an excessive consumption of NAD(+) and ATP depletion, these enzymes also are involved in the early events of programmed cell death as well as in necrosis. In order to verify the protective action of L-carnosine and trehalose against NO induced cell death, in the present study we examined their effects on the expression of PARP-1, PARP-2 and iNOS in primary rat astrocyte and oligodendrocyte cells, treated with lipopolysaccharide (LPS) and interferon gamma (INF gamma), through semi-quantitative PCR and western analysis. To further characterize the molecular mechanisms underlying L-carnosine and trehalose action, we measured cell viability, nitrite production and LDH release. The data obtained clearly demonstrate that in the stress model employed L-carnosine and trehalose down regulate PARP-1 and PARP-2 expression in both cell phenotypes, thus suggesting their possible application in clinical trials. OI SPINA, Vittoria/0000-0001-6050-7776

Poly(ADP-ribose) polymerases (PARPs) play a crucial role in DNA damage surveillance through their nick sensor functions. Since PARPs' over activation leads to an excessive consumption of NAD(+) and ATP depletion, these enzymes also are involved in the early events of programmed cell death as well as in necrosis. In order to verify the protective action of L-carnosine and trehalose against NO induced cell death, in the present study we examined their effects on the expression of PARP-1, PARP-2 and iNOS in primary rat astrocyte and oligodendrocyte cells, treated with lipopolysaccharide (LPS) and interferon gamma (INF gamma), through semi-quantitative PCR and western analysis. To further characterize the molecular mechanisms underlying L-carnosine and trehalose action, we measured cell viability, nitrite production and LDH release. The data obtained clearly demonstrate that in the stress model employed L-carnosine and trehalose down regulate PARP-1 and PARP-2 expression in both cell phenotypes, thus suggesting their possible application in clinical trials.

Modulation of PARP-1 and PARP-2 Expression by L-carnosine and Trehalose After LPS and INF gamma-Induced Oxidative Stress

BARRESI, VINCENZA;NICOLETTI, Vincenzo Giuseppe;
2010-01-01

Abstract

Poly(ADP-ribose) polymerases (PARPs) play a crucial role in DNA damage surveillance through their nick sensor functions. Since PARPs' over activation leads to an excessive consumption of NAD(+) and ATP depletion, these enzymes also are involved in the early events of programmed cell death as well as in necrosis. In order to verify the protective action of L-carnosine and trehalose against NO induced cell death, in the present study we examined their effects on the expression of PARP-1, PARP-2 and iNOS in primary rat astrocyte and oligodendrocyte cells, treated with lipopolysaccharide (LPS) and interferon gamma (INF gamma), through semi-quantitative PCR and western analysis. To further characterize the molecular mechanisms underlying L-carnosine and trehalose action, we measured cell viability, nitrite production and LDH release. The data obtained clearly demonstrate that in the stress model employed L-carnosine and trehalose down regulate PARP-1 and PARP-2 expression in both cell phenotypes, thus suggesting their possible application in clinical trials. OI SPINA, Vittoria/0000-0001-6050-7776
2010
Poly(ADP-ribose) polymerases (PARPs) play a crucial role in DNA damage surveillance through their nick sensor functions. Since PARPs' over activation leads to an excessive consumption of NAD(+) and ATP depletion, these enzymes also are involved in the early events of programmed cell death as well as in necrosis. In order to verify the protective action of L-carnosine and trehalose against NO induced cell death, in the present study we examined their effects on the expression of PARP-1, PARP-2 and iNOS in primary rat astrocyte and oligodendrocyte cells, treated with lipopolysaccharide (LPS) and interferon gamma (INF gamma), through semi-quantitative PCR and western analysis. To further characterize the molecular mechanisms underlying L-carnosine and trehalose action, we measured cell viability, nitrite production and LDH release. The data obtained clearly demonstrate that in the stress model employed L-carnosine and trehalose down regulate PARP-1 and PARP-2 expression in both cell phenotypes, thus suggesting their possible application in clinical trials.
PARP; astrocyte and oligodendrocyte cells; L-carnosine and trehalose
File in questo prodotto:
File Dimensione Formato  
Spina 2010 (PARP-1 and PARP-2 Expression by L-carnosine).pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 453.46 kB
Formato Adobe PDF
453.46 kB Adobe PDF   Visualizza/Apri
Spina -Purrello Neurochemical Rsearch 30-10-2010.pdf

solo gestori archivio

Tipologia: Documento in Post-print
Dimensione 470.06 kB
Formato Adobe PDF
470.06 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/10037
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 24
  • ???jsp.display-item.citation.isi??? 21
social impact