Bisphenol-A polycarbonate (PC) and polyethyleneterephthalate (PET) blends are known to undergo, upon thermal treatment (melt mixing), exchange reactions leading to the formation of copolymers having a final structure that is also affected by consecutive reactions involving CO2 and ethylene carbonate losses. In this work we followed the evolution of the surface composition of this system during the melt mixing at 270 degreesC, both with and without catalysts, by means of time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The static SIMS spectra obtained at different treatment times show the appearance of peaks related to newly formed structures and also the modification of the relative intensities of peaks characteristic of both the initial constituents of the blend. From the variation of the relative intensities of peaks related to the bisphenol-A unit of PC and to the phthalate structure of PET, it is shown that after the first stages of melt mixing the surface is PC enriched and that with the progressive formation of a random copolymer the phthalate units increase their concentration at the surface of the system. Hence, as final result of the melt mixing process, the surface composition tends to reflect the relative amount of the repeating units in the bulk. (C) 2002 Elsevier Science B.V. All rights reserved.

Surface evolution of polycarbonate/polyethylene terephthalate blends induced by thermal treatments

LICCIARDELLO, Antonino;
2003

Abstract

Bisphenol-A polycarbonate (PC) and polyethyleneterephthalate (PET) blends are known to undergo, upon thermal treatment (melt mixing), exchange reactions leading to the formation of copolymers having a final structure that is also affected by consecutive reactions involving CO2 and ethylene carbonate losses. In this work we followed the evolution of the surface composition of this system during the melt mixing at 270 degreesC, both with and without catalysts, by means of time-of-flight secondary ion mass spectroscopy (ToF-SIMS). The static SIMS spectra obtained at different treatment times show the appearance of peaks related to newly formed structures and also the modification of the relative intensities of peaks characteristic of both the initial constituents of the blend. From the variation of the relative intensities of peaks related to the bisphenol-A unit of PC and to the phthalate structure of PET, it is shown that after the first stages of melt mixing the surface is PC enriched and that with the progressive formation of a random copolymer the phthalate units increase their concentration at the surface of the system. Hence, as final result of the melt mixing process, the surface composition tends to reflect the relative amount of the repeating units in the bulk. (C) 2002 Elsevier Science B.V. All rights reserved.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/10145
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 9
  • ???jsp.display-item.citation.isi??? 8
social impact