Recent experiments have demonstrated coherent phenomena in three-level systems based on superconducting nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the main sources of decoherence in these systems, and we study its erect on the transfer efficiency. We propose a way to analyze low frequency fluctuations in terms of fictitious correlated fluctuations of external parameters. We discuss a specific implementation, namely the Quantronium setup of a Cooper-pair box, showing that optimizing the trade-off between efficient coupling and protection against noise may allow us to observe coherent population transfer in this nanodevice.

EFFECT OF LOW-FREQUENCY NOISE ON ADIABATIC PASSAGE IN A SUPERCONDUCTING NANOCIRCUIT

PALADINO, ELISABETTA;FALCI, Giuseppe
2011-01-01

Abstract

Recent experiments have demonstrated coherent phenomena in three-level systems based on superconducting nanocircuits. This opens the possibility to detect Stimulated Raman Adiabatic Passage (STIRAP) in artificial atoms. Low-fequency noise (often 1/f) is one of the main sources of decoherence in these systems, and we study its erect on the transfer efficiency. We propose a way to analyze low frequency fluctuations in terms of fictitious correlated fluctuations of external parameters. We discuss a specific implementation, namely the Quantronium setup of a Cooper-pair box, showing that optimizing the trade-off between efficient coupling and protection against noise may allow us to observe coherent population transfer in this nanodevice.
2011
COOPER-PAIR BOX; STIRAP; NOISE
File in questo prodotto:
File Dimensione Formato  
211-IJQI-stirap-lacognata.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 266.81 kB
Formato Adobe PDF
266.81 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/10193
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact