3-Hydroxy-1,2-dimethylpyridin-4(1H)-one (deferiprone) is a successful iron chelator, which has been widely investigated for its activity in mitigating iron overload and in protecting against oxidative stress due to Reactive Oxygen Species (ROS). Herein, we present the synthesis, characterisation, physicochemical properties and antioxidant activity of two novel bioconjugates of β-cyclodextrin bearing the deferiprone moiety either on the upper rim (1) or on the lower rim (2) of the cyclodextrin and their iron(III) complexes. Protonation and iron stability constants were measured by spectrophotometric titration for the two systems and antioxidant activity studied for both the ligands and the iron(III) complexes.
3-Hydroxy-1,2-dimethylpyridin-4(1H)-one (deferiprone) is a successful iron chelator, which has been widely investigated for its activity in mitigating iron overload and in protecting against oxidative stress due to Reactive Oxygen Species (ROS). Herein, we present the synthesis, characterisation, physicochemical properties and antioxidant activity of two novel bioconjugates of beta-cyclodextrin bearing the deferiprone moiety either on the upper rim (1) or on the lower rim (2) of the cyclodextrin and their iron(III) complexes. Protonation and iron stability constants were measured by spectrophotometric titration for the two systems and antioxidant activity studied for both the ligands and the iron(III) complexes.
Synthesis, physicochemical properties and antioxidant activity of deferiprone-cyclodextrin conjugates and their iron(III) complexes
OLIVERI, VALENTINA;VECCHIO, Graziella;
2012-01-01
Abstract
3-Hydroxy-1,2-dimethylpyridin-4(1H)-one (deferiprone) is a successful iron chelator, which has been widely investigated for its activity in mitigating iron overload and in protecting against oxidative stress due to Reactive Oxygen Species (ROS). Herein, we present the synthesis, characterisation, physicochemical properties and antioxidant activity of two novel bioconjugates of β-cyclodextrin bearing the deferiprone moiety either on the upper rim (1) or on the lower rim (2) of the cyclodextrin and their iron(III) complexes. Protonation and iron stability constants were measured by spectrophotometric titration for the two systems and antioxidant activity studied for both the ligands and the iron(III) complexes.I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.