The natural p300-specific histone acetyltransferase (HAT) inhibitor, curcumin (CUR), has been widely investigated for its potential therapeutic effect as an anticancer and anti-inflammatory agent. Notwithstanding this interesting pharmacological profile, CUR shows some drawbacks, such as poor absorption and a very fast metabolism and elimination, that limit its clinical use. Aim of the present study was to formulate CUR loaded nanostructured lipid carriers (NLC-CUR) in order to improve the bioavailability and stability of this compound after systemic administration with increased effects in the central nervous system (CNS). NLC-CUR were prepared and characterized on their physicochemical properties by PCS and DSC analyses. Thus, NLC-CUR were systemically injected and the effects in the CNS were compared with a CUR control formulation containing 0.05% DMSO (DMSO-CUR). Our results demonstrate that CUR is able to decrease histone acetylation in the CNS when included in NLCs. Western blot analysis shows that intraperitoneal injection of NLC-CUR (100mg/kg) in mice induces a marked hypoacetylation of histone 4 (H4) at lysine 12 (K12) in the spinal cord compared with control group. Notably, DMSO-CUR (100mg/kg) did not change the H4K12 acetylation level in the CNS. Our study suggests a novel approach to ameliorate the pharmacokinetics of CUR that allows a better permeation in the CNS.

Curcumin loaded NLC induces histone hypoacetylation in the CNS after intraperitoneal administration in mice.

PUGLIA, CARMELO;MUSUMECI, TERESA;PUGLISI, Giovanni;Bonina F;CHIECHIO, SANTINA
2012-01-01

Abstract

The natural p300-specific histone acetyltransferase (HAT) inhibitor, curcumin (CUR), has been widely investigated for its potential therapeutic effect as an anticancer and anti-inflammatory agent. Notwithstanding this interesting pharmacological profile, CUR shows some drawbacks, such as poor absorption and a very fast metabolism and elimination, that limit its clinical use. Aim of the present study was to formulate CUR loaded nanostructured lipid carriers (NLC-CUR) in order to improve the bioavailability and stability of this compound after systemic administration with increased effects in the central nervous system (CNS). NLC-CUR were prepared and characterized on their physicochemical properties by PCS and DSC analyses. Thus, NLC-CUR were systemically injected and the effects in the CNS were compared with a CUR control formulation containing 0.05% DMSO (DMSO-CUR). Our results demonstrate that CUR is able to decrease histone acetylation in the CNS when included in NLCs. Western blot analysis shows that intraperitoneal injection of NLC-CUR (100mg/kg) in mice induces a marked hypoacetylation of histone 4 (H4) at lysine 12 (K12) in the spinal cord compared with control group. Notably, DMSO-CUR (100mg/kg) did not change the H4K12 acetylation level in the CNS. Our study suggests a novel approach to ameliorate the pharmacokinetics of CUR that allows a better permeation in the CNS.
2012
Curcumin; P300 acetyltransferase inhibitor; CNS; Nanostructured lipid carrier (NLC); Motor toxicity evaluation; Western blot analysis
File in questo prodotto:
File Dimensione Formato  
final paper.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: Non specificato
Dimensione 578.09 kB
Formato Adobe PDF
578.09 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/11400
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 66
  • ???jsp.display-item.citation.isi??? 59
social impact