Arc discharge between two graphite rods in liquid nitrogen has been investigated in order to identify the main factors ruling the formation of carbon nanotubes (CNTs) and linear C chains. The influence of the experimental parameters on the structural properties of the produced materials was evaluated and interpreted, taking into account the existing models. We found that the electrode size and discharge current values greatly influence the structural quality of the nanotubes (e.g., presence of carbonaceous impurities, innermost tube diameter) and a proper combination of these parameters allows one to control the synthesis of CNTs and/or CNT-linear C chain hybrid systems.

Arc discharge between two graphite rods in liquid nitrogen has been investigated in order to identify the main factors ruling the formation of carbon nanotubes (CNTs) and linear C chains. The influence of the experimental parameters on the structural properties of the produced materials was evaluated and interpreted, taking into account the existing models. We found that the electrode size and discharge current values greatly influence the structural quality of the nanotubes (e.g., presence of carbonaceous impurities, innermost tube diameter) and a proper combination of these parameters allows one to control the synthesis of CNTs and/or CNT-linear C chain hybrid systems.

Controlled synthesis of carbon nanotubes and linear C chains by arc discharge in liquid nitrogen

D'URSO, LUISA;COMPAGNINI, Giuseppe Romano;
2010

Abstract

Arc discharge between two graphite rods in liquid nitrogen has been investigated in order to identify the main factors ruling the formation of carbon nanotubes (CNTs) and linear C chains. The influence of the experimental parameters on the structural properties of the produced materials was evaluated and interpreted, taking into account the existing models. We found that the electrode size and discharge current values greatly influence the structural quality of the nanotubes (e.g., presence of carbonaceous impurities, innermost tube diameter) and a proper combination of these parameters allows one to control the synthesis of CNTs and/or CNT-linear C chain hybrid systems.
Arc discharge between two graphite rods in liquid nitrogen has been investigated in order to identify the main factors ruling the formation of carbon nanotubes (CNTs) and linear C chains. The influence of the experimental parameters on the structural properties of the produced materials was evaluated and interpreted, taking into account the existing models. We found that the electrode size and discharge current values greatly influence the structural quality of the nanotubes (e.g., presence of carbonaceous impurities, innermost tube diameter) and a proper combination of these parameters allows one to control the synthesis of CNTs and/or CNT-linear C chain hybrid systems.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/11499
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 36
  • ???jsp.display-item.citation.isi??? 31
social impact