The authors' research efforts recently led to the development of a customized wireless control unit which receives the real-time feedbacks from the sensors, and elaborates the consequent control signal to drive the actuator(s). The controller is wireless in performing the data transmission task, i.e., it receives the signals from the sensors without the need of installing any analogue cable connection between them, but it is powered by wire. The actuator also needs to be powered by wire. In this framework, the design of a power management unit is of interest only for the wireless sensor stations, and it should be adaptable to different kind of sensor requirements in terms of voltage and power consumption. In the present paper, the power management efficiency is optimized by taking into consideration three different kinds of accelerometers, a load cell, and a non-contact laser displacement sensor. The required voltages are assumed to be provided by a power harvesting solution where the energy is stored into a capacitor.

Energy harvesting and power management of wireless sensors for structural control applications in civil engineering

CASCIATI, SARA;
2012

Abstract

The authors' research efforts recently led to the development of a customized wireless control unit which receives the real-time feedbacks from the sensors, and elaborates the consequent control signal to drive the actuator(s). The controller is wireless in performing the data transmission task, i.e., it receives the signals from the sensors without the need of installing any analogue cable connection between them, but it is powered by wire. The actuator also needs to be powered by wire. In this framework, the design of a power management unit is of interest only for the wireless sensor stations, and it should be adaptable to different kind of sensor requirements in terms of voltage and power consumption. In the present paper, the power management efficiency is optimized by taking into consideration three different kinds of accelerometers, a load cell, and a non-contact laser displacement sensor. The required voltages are assumed to be provided by a power harvesting solution where the energy is stored into a capacitor.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/12050
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 40
  • ???jsp.display-item.citation.isi??? 37
social impact