It is generally accepted that lipid peroxides play an important role in the pathogenesis of ethanol-induced cellular injury and that free sulfhydryl groups are vital in cellular defense against endogenous or exogenous oxidants. It has been observed that oxidative stress induces the synthesis of the 70-kDa family of heat-shock proteins (HSPs). Furthermore, induction of HSPs represents an essential and highly conserved cellular response to a variety of stressful stimuli. In the present study, we measured the intracellular levels of HSP 70 proteins after administration of mild intoxicating and grossly intoxicating doses of ethanol to rats. Our results demonstrate that elevated doses of ethanol induce HSP in various brain areas, namely, cerebellum, hippocampus, and to a lesser extent, striatum or liver. Induction of HSP 70 protein was correlated with a marked depletion of intracellular bound thiols and a decrease in lipid peroxidation measured as MDA formation. These studies support the hypothesis that a redox mechanism may be involved in the heat-shock signal pathway.

Stress proteins and SH-groups in oxidant-induced cell damage after acute ethanol administration in rat

CALABRESE, Vittorio;RENIS, Marcella;Russo A;Barcellona ML;
1996-01-01

Abstract

It is generally accepted that lipid peroxides play an important role in the pathogenesis of ethanol-induced cellular injury and that free sulfhydryl groups are vital in cellular defense against endogenous or exogenous oxidants. It has been observed that oxidative stress induces the synthesis of the 70-kDa family of heat-shock proteins (HSPs). Furthermore, induction of HSPs represents an essential and highly conserved cellular response to a variety of stressful stimuli. In the present study, we measured the intracellular levels of HSP 70 proteins after administration of mild intoxicating and grossly intoxicating doses of ethanol to rats. Our results demonstrate that elevated doses of ethanol induce HSP in various brain areas, namely, cerebellum, hippocampus, and to a lesser extent, striatum or liver. Induction of HSP 70 protein was correlated with a marked depletion of intracellular bound thiols and a decrease in lipid peroxidation measured as MDA formation. These studies support the hypothesis that a redox mechanism may be involved in the heat-shock signal pathway.
File in questo prodotto:
File Dimensione Formato  
Stress proteins and SH-groups in oxidant-induced cell damage.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 599.36 kB
Formato Adobe PDF
599.36 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/13057
Citazioni
  • ???jsp.display-item.citation.pmc??? 17
  • Scopus 90
  • ???jsp.display-item.citation.isi??? 83
social impact