Abstract Tissue transglutaminase (TG2), a multifunctional enzyme implicated in cellular proliferation and differentiation processes, plays a modulatory role in the cell response to stressors. Herein, we used olfactory ensheathing cells (OECs), representing an unusual population of glial cells to promote axonal regeneration and to provide trophic support, as well as to assess whether the effect of some Growth Factors (GFs), NGF, bFGF or GDNF, on TG2 overexpression induced by stress conditions, such as glutamate or lipopolysaccaride (LPS). Glial Fibrillary Acidic Protein (GFAP) and vimentin were used as markers of astroglial differentiation and cytoskeleton component, respectively. Glutamate or LPS treatment induced a particular increase of TG2 expression. A pre-treatment of the cells with the GFs restored the levels of the protein to that of untreated ones. Our results demonstrate that the treatment of OECs with the GFs was able to restore the OECs oxidative status as modified by stress, also counteracting TG2 overexpression. It suggests that, in OECs, TG2 modulation or inhibition induced by GFs might represent a therapeutic target to control the excitotoxicity and/or inflammation, which are involved in several acute and chronic brain diseases.

Expression of tissue transglutaminase on primary olfactory ensheathing cells cultures exposed to stress conditions.

CAMPISI, Agatina;RUSSO, Antonella;RACITI, Giuseppina;STANZANI, Stefania;
2012-01-01

Abstract

Abstract Tissue transglutaminase (TG2), a multifunctional enzyme implicated in cellular proliferation and differentiation processes, plays a modulatory role in the cell response to stressors. Herein, we used olfactory ensheathing cells (OECs), representing an unusual population of glial cells to promote axonal regeneration and to provide trophic support, as well as to assess whether the effect of some Growth Factors (GFs), NGF, bFGF or GDNF, on TG2 overexpression induced by stress conditions, such as glutamate or lipopolysaccaride (LPS). Glial Fibrillary Acidic Protein (GFAP) and vimentin were used as markers of astroglial differentiation and cytoskeleton component, respectively. Glutamate or LPS treatment induced a particular increase of TG2 expression. A pre-treatment of the cells with the GFs restored the levels of the protein to that of untreated ones. Our results demonstrate that the treatment of OECs with the GFs was able to restore the OECs oxidative status as modified by stress, also counteracting TG2 overexpression. It suggests that, in OECs, TG2 modulation or inhibition induced by GFs might represent a therapeutic target to control the excitotoxicity and/or inflammation, which are involved in several acute and chronic brain diseases.
2012
Olfactory ensheathing cells,; Tissue transglutaminase, Growth Factors, Stress conditions,; Immunocytochemistry, Glial cultures
File in questo prodotto:
File Dimensione Formato  
Campisi et al 2012.pdf

solo gestori archivio

Dimensione 786.38 kB
Formato Adobe PDF
786.38 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/13488
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 17
social impact