Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation and at high nucleon momenta. In this report we present a selection of reaction observables particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS) At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. Predictions are shown for deep-inelastic and fragmentation collisions induced by neutron rich projectiles. Differential flow measurements will also shed lights on the controversial neutron/proton effective mass splitting in asymmetric matter. The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a '' direct '' study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected '' neutron trapping '' effect. RI Baran, Virgil/A-8259-2011

Isospin dynamics in heavy ion collisions: EoS-sensitive observables

GRECO, VINCENZO;
2007-01-01

Abstract

Heavy Ion Collisions (HIC) represent a unique tool to probe the in-medium nuclear interaction in regions away from saturation and at high nucleon momenta. In this report we present a selection of reaction observables particularly sensitive to the isovector part of the interaction, i.e. to the symmetry term of the nuclear Equation of State (EoS) At low energies the behavior of the symmetry energy around saturation influences dissipation and fragment production mechanisms. Predictions are shown for deep-inelastic and fragmentation collisions induced by neutron rich projectiles. Differential flow measurements will also shed lights on the controversial neutron/proton effective mass splitting in asymmetric matter. The high density symmetry term can be derived from isospin effects on heavy ion reactions at relativistic energies (few AGeV range), that can even allow a '' direct '' study of the covariant structure of the isovector interaction in the hadron medium. Rather sensitive observables are proposed from collective flows and from pion/kaon production. The possibility of the transition to a mixed hadron-quark phase, at high baryon and isospin density, is finally suggested. Some signatures could come from an expected '' neutron trapping '' effect. RI Baran, Virgil/A-8259-2011
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/13502
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 14
  • ???jsp.display-item.citation.isi??? 14
social impact