We consider one-dimensional Hamiltonian systems whose ground states display symmetry-protected topological order. We show that ground states within the topological phase cannot be connected with each other through local operations and classical communication between a bipartition of the system. Our claim is demonstrated by analyzing the entanglement spectrum and Rényi entropies of different physical systems that provide examples for symmetry-protected topological phases. Specifically, we consider the spin-1/2 cluster-Ising model and a class of spin-1 models undergoing quantum phase transitions to the Haldane phase. Our results provide a probe for symmetry-protected topological order. Since the picture holds even at the system's local scale, our analysis can serve as a local experimental test for topological order.
Local characterization of 1d topologically ordered states
AMICO, Luigi;
2013-01-01
Abstract
We consider one-dimensional Hamiltonian systems whose ground states display symmetry-protected topological order. We show that ground states within the topological phase cannot be connected with each other through local operations and classical communication between a bipartition of the system. Our claim is demonstrated by analyzing the entanglement spectrum and Rényi entropies of different physical systems that provide examples for symmetry-protected topological phases. Specifically, we consider the spin-1/2 cluster-Ising model and a class of spin-1 models undergoing quantum phase transitions to the Haldane phase. Our results provide a probe for symmetry-protected topological order. Since the picture holds even at the system's local scale, our analysis can serve as a local experimental test for topological order.File | Dimensione | Formato | |
---|---|---|---|
PhysRevB.88.125117.pdf
solo gestori archivio
Tipologia:
Documento in Post-print
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
1.29 MB
Formato
Adobe PDF
|
1.29 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.