Many destructive shallow landslides hit villages in the Peloritani Mountains area (Sicily, Italy) on 1 October 2009 after heavy rainfall. The collection of several types of spatial data, together with a landslide inventory, allows the assessment of the landslide susceptibility by applying a statistical technique. The susceptibility model was validated by performing an analysis in a test area using independent landslide information, the results being able to correctly predict more than 70% of the landslides. Furthermore, the susceptibility analysis allowed the identification of which combinations of classes, within the different factors, have greater relevance in slope instability, and afterwards associating the most unstable combinations (with a short-medium term incidence) with the endogenic processes acting in the area (huge regional uplift, fault activity). Geological and tectonic history are believed to be key to interpreting morphological processes and landscape evolution. Recent tectonic activity was found to be a very important controlling factor in landscape evolution. A geomorphological model of cyclical relief evolution is proposed in which endogenic processes are directly linked to superficial processes. The results are relevant both to risk reduction and the understanding of active geological dynamics.

Landslide susceptibility assessment in the Peloritani Mts. (Sicily, Italy) and clues for tectonic control of relief processes

DE GUIDI, GIORGIO;
2013-01-01

Abstract

Many destructive shallow landslides hit villages in the Peloritani Mountains area (Sicily, Italy) on 1 October 2009 after heavy rainfall. The collection of several types of spatial data, together with a landslide inventory, allows the assessment of the landslide susceptibility by applying a statistical technique. The susceptibility model was validated by performing an analysis in a test area using independent landslide information, the results being able to correctly predict more than 70% of the landslides. Furthermore, the susceptibility analysis allowed the identification of which combinations of classes, within the different factors, have greater relevance in slope instability, and afterwards associating the most unstable combinations (with a short-medium term incidence) with the endogenic processes acting in the area (huge regional uplift, fault activity). Geological and tectonic history are believed to be key to interpreting morphological processes and landscape evolution. Recent tectonic activity was found to be a very important controlling factor in landscape evolution. A geomorphological model of cyclical relief evolution is proposed in which endogenic processes are directly linked to superficial processes. The results are relevant both to risk reduction and the understanding of active geological dynamics.
File in questo prodotto:
File Dimensione Formato  
De Guidi and Scudero_2013_Landslide suscettibility Peloritani.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Licenza: Creative commons
Dimensione 9.03 MB
Formato Adobe PDF
9.03 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/14447
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 29
  • ???jsp.display-item.citation.isi??? 27
social impact