Age-related cognitive decline is accompanied by an increase of neuronal apoptosis and a dysregulation of neuroplasticity-related molecules such as brain-derived neurotrophic factor and neurotoxic factors including beta amyloid (Aβ) peptide. Because it has been previously demonstrated that phosphodiesterase-5 inhibitors (PDE5-Is) protect against hippocampal synaptic dysfunction and memory deficits in mouse models of Alzheimer's disease and physiological aging, we investigated the effect of a treatment with the PDE5-I, sildenafil, on cell death, pro- and antiapoptotic molecules, and Aβ production. We demonstrated that chronic intraperitoneal injection of sildenafil (3 mg/kg for 3 weeks) decreased terminal deoxyuridine triphosphate nick end labeling-positive cells in the CA1 hippocampal area of 26-30-month-old mice, downregulating the proapoptotic proteins, caspase-3 and B-cell lymphoma 2-associated X, and increasing antiapoptotic molecules such as B-cell lymphoma protein-2 and brain-derived neurotrophic factor. Also, sildenafil reverted the shifting of amyloid precursor protein processing toward Aβ42 production and the increase of the Aβ42:Aβ40 ratio in aged mice. Our data suggest that PDE5-I might be beneficial to treat age-related detrimental features in a physiological mouse model of aging.

Age-related cognitive decline is accompanied by an increase of neuronal apoptosis and a dysregulationof neuroplasticity-related molecules such as brain-derived neurotrophic factor and neurotoxic factors including beta amyloid (Aβ) peptide. Because it has been previously demonstrated that phosphodiesterase-5 inhibitors (PDE5-Is) protect against hippocampal synaptic dysfunction and memory deficits in mouse models of Alzheimer's disease and physiological aging, we investigated the effect of a treatment with the PDE5-I, sildenafil, on cell death, pro- and antiapoptotic molecules, and Aβ production. We demonstrated that chronic intraperitoneal injection of sildenafil (3 mg/kg for 3 weeks) decreased terminal deoxyuridine triphosphate nick end labeling-positive cells in the CA1 hippocampal area of 26-30-month-old mice, downregulating the proapoptotic proteins, caspase-3 and B-cell lymphoma 2-associated X, and increasing antiapoptotic molecules such as B-cell lymphoma protein-2 and brain-derived neurotrophic factor. Also, sildenafil reverted the shifting of amyloid precursor protein processing toward Aβ42 production and the increase of the Aβ42:Aβ40 ratio in aged mice. Our data suggest that PDE5-I might be beneficial to treat age-related detrimental features in a physiological mouse model of aging

Effect of phosphodiesterase-5 inhibition on apoptosis and beta amyloid load in aged mice

PUZZO, DANIELA;LORETO, CARLA AGATA;GIUNTA, SALVATORE;MUSUMECI, GIUSEPPE;PALMERI, Agostino
2014-01-01

Abstract

Age-related cognitive decline is accompanied by an increase of neuronal apoptosis and a dysregulation of neuroplasticity-related molecules such as brain-derived neurotrophic factor and neurotoxic factors including beta amyloid (Aβ) peptide. Because it has been previously demonstrated that phosphodiesterase-5 inhibitors (PDE5-Is) protect against hippocampal synaptic dysfunction and memory deficits in mouse models of Alzheimer's disease and physiological aging, we investigated the effect of a treatment with the PDE5-I, sildenafil, on cell death, pro- and antiapoptotic molecules, and Aβ production. We demonstrated that chronic intraperitoneal injection of sildenafil (3 mg/kg for 3 weeks) decreased terminal deoxyuridine triphosphate nick end labeling-positive cells in the CA1 hippocampal area of 26-30-month-old mice, downregulating the proapoptotic proteins, caspase-3 and B-cell lymphoma 2-associated X, and increasing antiapoptotic molecules such as B-cell lymphoma protein-2 and brain-derived neurotrophic factor. Also, sildenafil reverted the shifting of amyloid precursor protein processing toward Aβ42 production and the increase of the Aβ42:Aβ40 ratio in aged mice. Our data suggest that PDE5-I might be beneficial to treat age-related detrimental features in a physiological mouse model of aging.
2014
Age-related cognitive decline is accompanied by an increase of neuronal apoptosis and a dysregulationof neuroplasticity-related molecules such as brain-derived neurotrophic factor and neurotoxic factors including beta amyloid (Aβ) peptide. Because it has been previously demonstrated that phosphodiesterase-5 inhibitors (PDE5-Is) protect against hippocampal synaptic dysfunction and memory deficits in mouse models of Alzheimer's disease and physiological aging, we investigated the effect of a treatment with the PDE5-I, sildenafil, on cell death, pro- and antiapoptotic molecules, and Aβ production. We demonstrated that chronic intraperitoneal injection of sildenafil (3 mg/kg for 3 weeks) decreased terminal deoxyuridine triphosphate nick end labeling-positive cells in the CA1 hippocampal area of 26-30-month-old mice, downregulating the proapoptotic proteins, caspase-3 and B-cell lymphoma 2-associated X, and increasing antiapoptotic molecules such as B-cell lymphoma protein-2 and brain-derived neurotrophic factor. Also, sildenafil reverted the shifting of amyloid precursor protein processing toward Aβ42 production and the increase of the Aβ42:Aβ40 ratio in aged mice. Our data suggest that PDE5-I might be beneficial to treat age-related detrimental features in a physiological mouse model of aging
aging; apoptosis; sildenafil
File in questo prodotto:
File Dimensione Formato  
18_2014_Puzzo_NBA.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 1.96 MB
Formato Adobe PDF
1.96 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/14645
Citazioni
  • ???jsp.display-item.citation.pmc??? 21
  • Scopus 74
  • ???jsp.display-item.citation.isi??? 71
social impact