Thiazolidinediones (also referred to as glitazones), agonists for Peroxisome Proliferator-Activated Receptor gamma (PPAR gamma), are used for treating type 2 diabetes mellitus, where they decrease insulin resistance and cardiovascular risk. Compounds bearing the thiazolidinedione structure have also been shown to inhibit phosphoinositide 3-kinase (PI3K). Here we tried to elucidate the poorly defined role of PI3K/Akt in the physiology of vascular smooth muscle cell contraction and tested the hypothesis that thiazolidinediones, by affecting the PI3K/Akt pathway, may influence vascular physiology. Isolated rat femoral arteries segments were mounted in a wire myograph and challenged with 100 mM KCl or phenylephrine (PE), in the absence or presence of troglitazone, rosiglitazone, pioglitazone, LY294002 (PI3K inhibitor) and 10-DEBC (Akt inhibitor). All these compounds dose-dependently inhibited vasoconstriction to KCl or PE; their effect was reversible (after 60-120 min washout) and not affected by GW9662 (a PPAR gamma antagonist) or by N-G-nitro-L-arginine (LNNA, an inhibitor of NO biosynthesis). Analysis of phospho-Akt (ser 473) in lysates from rat arteries (by immunoblot) revealed that thiazolidinediones, LY294002 and 10-DEBC, at the same concentration and kinetics inhibiting vasoconstriction, produced a similar decrease of Akt phosphorylation. PI3K/Akt pathway therefore appears to be an important, fast acting, modulator of contraction of vascular smooth muscle. Thiazolidinediones decrease vasoconstriction of isolated vessels possibly by inhibiting PI3K/Akt pathway. Such an effect of glitazones, if occurring in vivo, may impact cardiovascular syndromes related to vasospasm in diabetic patients. (C) 2012 Elsevier Inc. All rights reserved.

Reversible inhibition of vasoconstriction by thiazolidinediones related to PI3K/Akt inhibition in vascular smooth muscle cells

DRAGO, Filippo;BUCOLO, CLAUDIO;SALOMONE, Salvatore
2013-01-01

Abstract

Thiazolidinediones (also referred to as glitazones), agonists for Peroxisome Proliferator-Activated Receptor gamma (PPAR gamma), are used for treating type 2 diabetes mellitus, where they decrease insulin resistance and cardiovascular risk. Compounds bearing the thiazolidinedione structure have also been shown to inhibit phosphoinositide 3-kinase (PI3K). Here we tried to elucidate the poorly defined role of PI3K/Akt in the physiology of vascular smooth muscle cell contraction and tested the hypothesis that thiazolidinediones, by affecting the PI3K/Akt pathway, may influence vascular physiology. Isolated rat femoral arteries segments were mounted in a wire myograph and challenged with 100 mM KCl or phenylephrine (PE), in the absence or presence of troglitazone, rosiglitazone, pioglitazone, LY294002 (PI3K inhibitor) and 10-DEBC (Akt inhibitor). All these compounds dose-dependently inhibited vasoconstriction to KCl or PE; their effect was reversible (after 60-120 min washout) and not affected by GW9662 (a PPAR gamma antagonist) or by N-G-nitro-L-arginine (LNNA, an inhibitor of NO biosynthesis). Analysis of phospho-Akt (ser 473) in lysates from rat arteries (by immunoblot) revealed that thiazolidinediones, LY294002 and 10-DEBC, at the same concentration and kinetics inhibiting vasoconstriction, produced a similar decrease of Akt phosphorylation. PI3K/Akt pathway therefore appears to be an important, fast acting, modulator of contraction of vascular smooth muscle. Thiazolidinediones decrease vasoconstriction of isolated vessels possibly by inhibiting PI3K/Akt pathway. Such an effect of glitazones, if occurring in vivo, may impact cardiovascular syndromes related to vasospasm in diabetic patients. (C) 2012 Elsevier Inc. All rights reserved.
File in questo prodotto:
File Dimensione Formato  
Reversible inhibition of vasoconstriction.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 1.03 MB
Formato Adobe PDF
1.03 MB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16252
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 18
  • ???jsp.display-item.citation.isi??? 19
social impact