In this study, pollen viability and germination of three plant species, Cercis siliquastrum L., Robinia pseudoacacia L., and Spartium junceum L., belonging to the Fabaceae family, was evaluated in sites with different intensity of road traffic, constantly monitored with continuous analysers for air pollutants (carbon monoxide (CO), sulphur dioxide (SO2), and nitrogen dioxide (NO2)) by the Municipality of Catania. Two sites, in which road traffic was absent, were selected, too. The percentages of viable pollen by 2,3,5-trypheniltetrazolium chloride (TTC) test ranger from 59.0 to 90.2 % in C. siliquastrum, from 61.5 to 83.5 % in S. junceum and from 67.5 to 84.3 % in R. pseudoacacia. The percentages of germination varied from 41.0 to 72.7 % in C. siliquastrum, from 42.0 to 64.7 % in S. junceum and from 38.3 to 66.3 % in R. pseudoacacia. The highest percentages of viable pollens were found in no-road traffic stations by either TTC or germination tests, while the lowest values were detected in a site characterised by heavy road traffic. In the monitored period (2007–2009), pollen viability, germinability and tube length of C. siliquastrum resulted in a significant negative correlation to CO, SO2 and NO2, whereas data from TTC and germination tests on S. junceum and R. pseudoacacia pollens were not well correlated to air pollutants. The results showed that pollen viability, germination and tube growth in C. siliquastrum were affected by air pollution. S. junceum and R. pseudoacacia were not very influenced by air pollutants, suggesting a different pollen sensitivity of these species.

Air quality biomonitoring through pollen viability of Fabaceae

DURO, Anna;
2013

Abstract

In this study, pollen viability and germination of three plant species, Cercis siliquastrum L., Robinia pseudoacacia L., and Spartium junceum L., belonging to the Fabaceae family, was evaluated in sites with different intensity of road traffic, constantly monitored with continuous analysers for air pollutants (carbon monoxide (CO), sulphur dioxide (SO2), and nitrogen dioxide (NO2)) by the Municipality of Catania. Two sites, in which road traffic was absent, were selected, too. The percentages of viable pollen by 2,3,5-trypheniltetrazolium chloride (TTC) test ranger from 59.0 to 90.2 % in C. siliquastrum, from 61.5 to 83.5 % in S. junceum and from 67.5 to 84.3 % in R. pseudoacacia. The percentages of germination varied from 41.0 to 72.7 % in C. siliquastrum, from 42.0 to 64.7 % in S. junceum and from 38.3 to 66.3 % in R. pseudoacacia. The highest percentages of viable pollens were found in no-road traffic stations by either TTC or germination tests, while the lowest values were detected in a site characterised by heavy road traffic. In the monitored period (2007–2009), pollen viability, germinability and tube length of C. siliquastrum resulted in a significant negative correlation to CO, SO2 and NO2, whereas data from TTC and germination tests on S. junceum and R. pseudoacacia pollens were not well correlated to air pollutants. The results showed that pollen viability, germination and tube growth in C. siliquastrum were affected by air pollution. S. junceum and R. pseudoacacia were not very influenced by air pollutants, suggesting a different pollen sensitivity of these species.
Air pollution Biomonitoring Fabaceae Pollen viability Germination Tube growth
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16468
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 6
  • ???jsp.display-item.citation.isi??? 6
social impact