Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence
hat the other electric field component is polarized radially with respect to he shower axis, in agreement
with predictions made by Askaryan who described radio emission from particle showers due to a negative
charge excess in the front of the shower. Our results are compared to calculations which include the
radiation mechanism induced by this charge-excess process
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
Probing the radio emission from air showers with polarization measurements
Aab A.;Abreu P.;Aglietta M.;Ahlers M.;Ahn E. J.;Albuquerque I. F. M.;Allekotte I.;Allen J.;Allison P.;Almela A.;Alvarez Castillo J.;Alvarez Muñiz J.;Alves Batista R.;Ambrosio M.;Aminaei A.;Anchordoqui L.;Andringa S.;Antičić T.;Aramo C.;Arqueros F.;Asorey H.;Assis P.;Aublin J.;Ave M.;Avenier M.;Avila G.;Badescu A. M.;Barber K. B.;Bardenet R.;Bäuml J.;Baus C.;Beatty J. J.;Becker K. H.;Bellido J. A.;BenZvi S.;Berat C.;Bertou X.;Biermann P. L.;Billoir P.;Blanco F.;Blanco M.;Bleve C.;Blümer H.;Boháčová M.;Boncioli D.;Bonifazi C.;Bonino R.;Borodai N.;Brack J.;Brancus I.;Brogueira P.;Brown W. C.;Buchholz P.;Bueno A.;BUSCEMI, MARIO;Caballero Mora K. S.;Caccianiga B.;Caccianiga L.;Candusso M.;Caramete L.;CARUSO, ROSSELLA;Castellina A.;Cataldi G.;Cazon L.;Cester R.;Cheng S. H.;Chiavassa A.;Chinellato J. A.;Chudoba J.;Cilmo M.;Clay R. W.;Cocciolo G.;Colalillo R.;Collica L.;Coluccia M. R.;Conceição R.;Contreras F.;Cooper M. J.;Coutu S.;Covault C. E.;Criss A.;Cronin J.;Curutiu A.;Dallier R.;Daniel B.;Dasso S.;Daumiller K.;Dawson B. R.;de Almeida R. M.;De Domenico M.;de Jong S. J.;De La Vega G.;de Mello Junior W. J. M.;de Mello Neto J. R. T.;De Mitri I.;de Souza V.;de Vries K. D.;del Peral L.;Deligny O.;Dembinski H.;Dhital N.;Di Giulio C.;Di Matteo A.;Diaz J. C.;Díaz Castro M. L.;Diep P. N.;Diogo F.;Dobrigkeit C.;Docters W.;D'Olivo J. C.;Dong P. N.;Dorofeev A.;dos Anjos J. C.;Dova M. T.;Ebr J.;Engel R.;Erdmann M.;Escobar C. O.;Espadanal J.;Etchegoyen A.;Facal San Luis P.;Falcke H.;Fang K.;Farrar G.;Fauth A. C.;Fazzini N.;Ferguson A. P.;Fick B.;Figueira J. M.;Filevich A.;Filipčič A.;Foerster N.;Fox B. D.;Fracchiolla C. E.;Fraenkel E. D.;Fratu O.;Fröhlich U.;Fuchs B.;Gaior R.;Gamarra R. F.;Gambetta S.;García B.;Garcia Roca S. T.;Garcia Gamez D.;Garcia Pinto D.;Garilli G.;Gascon Bravo A.;Gemmeke H.;Ghia P. L.;Giammarchi M.;Giller M.;Gitto J.;Glaser C.;Glass H.;Gomez Albarracin F.;Gómez Berisso M.;Gómez Vitale P. F.;Gonçalves P.;Gonzalez J. G.;Gookin B.;Gorgi A.;Gorham P.;Gouffon P.;Grebe S.;Griffith N.;Grillo A. F.;Grubb T. D.;Guardincerri Y.;Guarino F.;Guedes G. P.;Hansen P.;Harari D.;Harrison T. A.;Harton J. L.;Haungs A.;Hebbeker T.;Heck D.;Herve A. E.;Hill G. C.;Hojvat C.;Hollon N.;Holt E.;Homola P.;Hörandel J. R.;Horvath P.;Hrabovský M.;Huber D.;Huege T.;INSOLIA, Antonio;Isar P. G.;Jansen S.;Jarne C.;Josebachuili M.;Kadija K.;Kambeitz O.;Kampert K. H.;Karhan P.;Kasper P.;Katkov I.;Kégl B.;Keilhauer B.;Keivani A.;Kemp E.;Kieckhafer R. M.;Klages H. O.;Kleifges M.;Kleinfeller J.;Knapp J.;Krause R.;Krohm N.;Krömer O.;Kruppke Hansen D.;Kuempel D.;Kunka N.;La Rosa G.;LaHurd D.;Latronico L.;Lauer R.;Lauscher M.;Lautridou P.;Le Coz S.;Leão M. S. A. B.;Lebrun D.;Lebrun P.;Leigui de Oliveira M. A.;Letessier Selvon A.;Lhenry Yvon I.;Link K.;López R.;Lopez Agüera A.;Louedec K.;Lozano Bahilo J.;Lu L.;Lucero A.;Ludwig M.;Lyberis H.;Maccarone M. C.;Malacari M.;Maldera S.;Maller J.;Mandat D.;Mantsch P.;Mariazzi A. G.;Marin V.;Mariş I. C.;Marquez Falcon H. R.;Marsella G.;Martello D.;Martin L.;Martinez H.;Martínez Bravo O.;Martraire D.;Masías Meza J. J.;Mathes H. J.;Matthews J.;Matthews J. A. J.;Matthiae G.;Maurel D.;Maurizio D.;Mayotte E.;Mazur P. O.;Medina C.;Medina Tanco G.;Melissas M.;Melo D.;Menichetti E.;Menshikov A.;Messina S.;Meyhandan R.;Mićanović S.;Micheletti M. I.;Middendorf L.;Minaya I. A.;Miramonti L.;Mitrica B.;Molina Bueno L.;Mollerach S.;Monasor M.;Monnier Ragaigne D.;Montanet F.;Morales B.;Morello C.;Moreno J. C.;Mostafá M.;Moura C. A.;Muller M. A.;Müller G.;Münchmeyer M.;Mussa R.;Navarra G.;Navarro J. L.;Navas S.;Necesal P.;Nellen L.;Nelles A.;Neuser J.;Nhung P. T.;Niechciol M.;Niemietz L.;Niggemann T.;Nitz D.;Nosek D.;Nožka L.;Oehlschläger J.;Olinto A.;Oliveira M.;Ortiz M.;Pacheco N.;Pakk Selmi Dei D.;Palatka M.;Pallotta J.;Palmieri N.;Parente G.;Parra A.;Pastor S.;Paul T.;Pech M.;Pe¸kala J.;Pelayo R.;Pepe I. M.;Perrone L.;Pesce R.;Petermann E.;Petrera S.;Petrolini A.;Petrov Y.;Piegaia R.;Pierog T.;Pieroni P.;Pimenta M.;PIRRONELLO, Valerio;Platino M.;Plum M.;Pontz M.;Porcelli A.;Preda T.;Privitera P.;Prouza M.;Quel E. J.;Querchfeld S.;Quinn S.;Rautenberg J.;Ravel O.;Ravignani D.;Revenu B.;Ridky J.;Riggi S.;Risse M.;Ristori P.;Rivera H.;Rizi V.;Roberts J.;Rodrigues de Carvalho W.;Rodriguez Cabo I.;Rodriguez Fernandez G.;Rodriguez Martino J.;Rodriguez Rojo J.;Rodríguez Frías M. D.;Ros G.;Rosado J.;Rossler T.;Roth M.;Rouillé d'Orfeuil B.;Roulet E.;Rovero A. C.;Rühle C.;Saffi S. J.;Saftoiu A.;Salamida F.;Salazar H.;Salesa Greus F.;Salina G.;Sánchez F.;Sanchez Lucas P.;Santo C. E.;Santos E.;Santos E. M.;Sarazin F.;Sarkar B.;Sarmento R.;Sato R.;Scharf N.;Scherini V.;Schieler H.;Schiffer P.;Schmidt A.;Scholten O.;Schoorlemmer H.;Schovánek P.;Schröder F. G.;Schulz A.;Schulz J.;Sciutto S. J.;Scuderi M.;Segreto A.;Settimo M.;Shadkam A.;Shellard R. C.;Sidelnik I.;Sigl G.;Sima O.;Śmiałkowski A.;Šmída R.;Snow G. R.;Sommers P.;Sorokin J.;Spinka H.;Squartini R.;Srivastava Y. N.;Stanič S.;Stapleton J.;Stasielak J.;Stephan M.;Straub M.;Stutz A.;Suarez F.;Suomijärvi T.;Supanitsky A. D.;Šuša T.;Sutherland M. S.;Swain J.;Szadkowski Z.;Szuba M.;Tapia A.;Tartare M.;Taşcǎu O.;Thao N. T.;Tiffenberg J.;Timmermans C.;Tkaczyk W.;Todero Peixoto C. J.;Toma G.;Tomankova L.;Tomé B.;Tonachini A.;Torralba Elipe G.;Torres Machado D.;Travnicek P.;Tridapalli D. B.;Trovato E.;Tueros M.;Ulrich R.;Unger M.;Valdés Galicia J. F.;Valiño I.;Valore L.;van Aar G.;van den Berg A. M.;van Velzen S.;van Vliet A.;Varela E.;Vargas Cárdenas B.;Varner G.;Vázquez J. R.;Vázquez R. A.;Veberič D.;Verzi V.;Vicha J.;Videla M.;Villaseñor L.;Wahlberg H.;Wahrlich P.;Wainberg O.;Walz D.;Watson A. A.;Weber M.;Weidenhaupt K.;Weindl A.;Werner F.;Westerhoff S.;Whelan B. J.;Widom A.;Wieczorek G.;Wiencke L.;Wilczyńska B.;Wilczyński H.;Will M.;Williams C.;Winchen T.;Wundheiler B.;Wykes S.;Yamamoto T.;Yapici T.;Younk P.;Yuan G.;Yushkov A.;Zamorano B.;Zas E.;Zavrtanik D.;Zavrtanik M.;Zaw I.;Zepeda A.;Zhou J.;Zhu Y.;Zimbres Silva M.;Ziolkowski M.;Pierre Auger Collaboration
2014-01-01
Abstract
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence
hat the other electric field component is polarized radially with respect to he shower axis, in agreement
with predictions made by Askaryan who described radio emission from particle showers due to a negative
charge excess in the front of the shower. Our results are compared to calculations which include the
radiation mechanism induced by this charge-excess process
The emission of radio waves from air showers has been attributed to the so-called geomagnetic emission process. At frequencies around 50 MHz this process leads to coherent radiation which can be observed with rather simple setups. The direction of the electric field induced by this emission process depends only on the local magnetic field vector and on the incoming direction of the air shower. We report on measurements of the electric field vector where, in addition to this geomagnetic component, another component has been observed that cannot be described by the geomagnetic emission process. The data provide strong evidence that the other electric field component is polarized radially with respect to the shower axis, in agreement with predictions made by Askaryan who described radio emission from particle showers due to a negative charge excess in the front of the shower. Our results are compared to calculations which include the radiation mechanism induced by this charge-excess process.
Composition energy spectra and interactions; Solar electromagnetic emission; Bolometers
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16620
Citazioni
ND
123
90
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.