Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine "target sets," in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine 'target sets,' in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine "target sets," in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.
A Targeted Search for Point Sources of EeV Neutrons
Aab A.;Abreu P.;Aglietta M.;Ahlers M.;Ahn E. J.;Al Samarai I.;Albuquerque I. F. M.;Allekotte I.;Allen J.;Allison P.;Almela A.;Castillo J. Alvarez;Alvarez Muniz J.;Batista R. Alves;Ambrosio M.;Aminaei A.;Anchordoqui L.;Andringa S.;ARAMO, Carla;Arqueros F.;Asorey H.;Assis P.;Aublin J.;Ave M.;Avenier M.;Avila G.;Badescu A. M.;Barber K. B.;Baumel J.;Baus C.;Beatty J. J.;Becker K. H.;Bellido J. A.;Berat C.;Bertou X.;Biermann P. L.;Billoir P.;Blanco F.;Blanco M.;Bleve C.;Blumer H.;Boiiacova M.;Boncioli D.;Bonifazi C.;Bonino R.;Borodai N.;Brack J.;Brancus I.;Brogueira P.;Brown W. C.;Buchholz P.;Bueno A.;BUSCEMI, MARIO;Caballero Mora K. S.;Caccianiga B.;Caccianiga L.;Candusso M.;Caramete L.;CARUSO, ROSSELLA;Castellina A.;Cataldi G.;Cazon L.;Cester R.;Chavez A. G.;Cheng S. H.;Chiavassa A.;Chinellato J. A.;Chudoba J.;Cilmo M.;Clay R. W.;Cocciolo G.;Colalillo R.;Collica L.;Coluccia M. R.;Conceicao R.;Contreras F.;Cooper M. J.;Coutu S.;Covault C. E.;Criss A.;Cronin J.;Curutiu A.;Dallier R.;Daniel B.;Dasso S.;Daumiller K.;Dawson B. R.;De Almeida R. M.;De Domenico M.;De Jong S. J.;De Mello Neto J. R. T.;De Mitri I.;De Oliveira J.;De Souza V.;Del Peral L.;Deligny O.;Dembinski H.;Dhital N.;Di Giulio C.;Di Matteo A.;Diaz J. C.;Castro M. L. Diaz;Diep P. N.;Diogo F.;Dobrigkeit C.;Docters W.;D'Olivo J. C.;Dong P. N.;Dorofeev A.;Dova M. T.;Ebr J.;Engel R.;Erdmann M.;Erfani M.;Escobar C. O.;Espadanal J.;Etchegoyen A.;Luis P. Facal San;Falcke H.;Fang K.;Farrar G.;Fauth A. C.;Fazzini N.;Ferguson A. P.;Fernandes M.;Fick B.;Figueira J. M.;Filevich A.;Filipcic A.;Fox B. D.;Fratu O.;Frohlich U.;Fuchs B.;Fuji T.;Gaior R.;Garia B.;Roca S. T. Garcia;Garcia Gamez D.;Garcia Pinto D.;Garilli G.;Bravo A. Gascon;Gate F.;Gemmeke H.;Ghia P. L.;Giaccari U.;Giammarchi M.;Giller M.;Glaser C.;Glass H.;Albarracin F. Gomez;Berisso M. Gomez;Vitale P. F. Gomez;Goncalves P.;Gonzalez J. G.;Gookin B.;Gorgi A.;Gorham P.;Gouffon P.;Grebe S.;Griffith N.;Grillo A. F.;Grubb T. D.;Guardincerri Y.;Guarino F.;Guedes G. P.;Hansen P.;Harari D.;Harrison T. A.;Harton J. L.;Hasankiadeh Q. D.;Haungs A.;Hebbeker T.;Heck D.;Heimann P.;Herve A. E.;Hill G. C.;Hojvat C.;Hollon N.;Holt E.;Homola P.;Horandel J. R.;Horvath P.;Hrabovsky M.;Huber D.;Huege T.;INSOLIA, Antonio;Isar P. G.;Islo K.;Jandt I.;Jansen S.;Jarne C.;Josebachuili M.;Kaapa A.;Kambeitz O.;Kampert K. H.;Kasper P.;Katkov I.;Kegl B.;Keilhauer B.;Keivani A.;Kemp E.;Kieckhafer R. M.;Klages H. O.;Kleifges M.;Kleinfeller J.;Krause R.;Krohm N.;Kromer O.;Kruppke Hansen D.;Kuempel D.;Kunka N.;La Rosa G.;LaHurd D.;Latronico L.;Lauer R.;Lauscher M.;Lautridou P.;Le Coz S.;Leao M. S. A. B.;Lebrun D.;Lebrun P.;De Oliveira M. A. Leigui;Letessier Selvon A.;Lhenry Yvon I.;Link K.;Lopez R.;Aguera A. Lopez;Louedec K.;Bahilo J. Lozano;Lu L.;Lucero A.;Ludwig M.;Lyberis H.;Maccarone M. C.;Malacari M.;Maldera S.;Maller J.;Mandat D.;Mantsch P.;Mariazzi A. G.;Marin V.;Maris I. C.;Marsella G.;Martello D.;Martin L.;Martinez H.;Bravo O. Martinez;Martraire D.;Meza J. J. Masia;Mathes H. J.;Mathys S.;Matthews A. J.;Matthews J.;Matthiae G.;Maurel D.;Maurizio D.;Mayotte E.;Mazur P. O.;Medina C.;Medina Tanco G.;Melissas M.;Melo D.;Menichetti E.;Menshikov A.;Messina S.;Meyhandan R.;Micanovic S.;Micheletti M. I.;Middendorf L.;Minaya I. A.;Miramonti L.;Mitrica B.;Molina Bueno L.;Mollerach S.;Monasor M.;Ragaigne D. Monnier;Montanet F.;Morello C.;Moreno J. C.;Mostafa M.;Moura C. A.;Muller M. A.;Muller G.;Munchmeyer M.;Mussa R.;Navarra G.;Navas S.;Necesal P.;Nellen L.;Nelles A.;Neuser J.;Niechciol M.;Niemietz L.;Niggemann T.;Nitz D.;Nosek D.;Novotny V.;Nozka L.;Ochilo L.;Olinto A.;Oliveira M.;Ortiz M.;Pacheco N.;Selmi Dei D. Pakk;Palatka M.;Pallotta J.;Palmieri N.;Papenbreer P.;Parente G.;Parra A.;Pastor S.;Paul T.;Pech M.;Pekala J.;Pelayo R.;Pepe I. M.;Perrone L.;Pesce R.;Petermann E.;Peters C.;Petrera S.;Petrolini A.;Petrov Y.;Piegaia R.;Pierog T.;Pieroni P.;Pimenta M.;PIRRONELLO, Valerio;Platino M.;Plum M.;Porcelli A.;Porowski C.;Privitera P.;Prouza M.;Purrello V.;Quel E. J.;Querchfeld S.;Quinn S.;Rautenberg J.;Ravel O.;Ravignani D.;Revenu B.;Ridky J.;Riggi S.;Risse M.;Ristori P.;Rizi V.;Roberts J.;De Carvalho W. Rodrigues;Cabo I. Rodriguez;Fernandez G. Rodriguez;Rojo J. Rodriguez;Rodriguez Frias M. D.;Ros G.;Rosado J.;Rossler T.;Roth M.;Roulet E.;Rovero A. C.;Ruhle C.;Saffi S. J.;Saftoiu A.;Salamida F.;Salazar H.;Greus F. Salesa;Salina G.;Sanchaz F.;Sanchez Lucas P.;Santo C. E.;Santos E.;Santos E. M.;Sarazin F.;Sarkar B.;Sarmento R.;Sato R.;Scharf N.;Scherini V.;Schieler H.;Schiffer P.;Schmidt A.;Scholten O.;Schoorlemmer H.;Schovanek P.;Schulz A.;Schulz J.;Sciutto S. J.;Segreto A.;Settimo M.;Shadkam A.;Shellard R. C.;Sidelnik I.;Sigl G.;Sima O.;Smialkowski A.;Smida R.;Snow G. R.;Sommers P.;Sorokin J.;Squartini R.;Srivastava Y. N.;Stanic S.;Stapleton J.;Stasielak J.;Stephan M.;Stutz A.;Suarez F.;Suomijarvi T.;Supanitsky A. D.;Sutherland M. S.;Swain J.;Szadkowski Z.;Szuba M.;Taborda O. A.;Tapia A.;Tartare M.;Thao N. T.;Theodoro V. M.;Tiffenberg J.;Timmermans C.;Peixoto C. J. Todero;Toma G.;Tomankova L.;Tome B.;Tonachini A.;Elipe G. Torralba;Machado D. Torres;Travnicek P.;Trovato E.;Tueros M.;Ulrich R.;Unger M.;Urban M.;Galicia J. F. Valdes;Valino I.;Valore L.;Van Aar G.;Van den Berg A. M.;Van Velzen S.;Van Vliet A.;Varela E.;Cardenas B. Vargas;Varner G.;Vazquez J. R.;Vazquez R. A.;Veberic D.;Verzi V.;Vicha J.;Videla M.;Villasenor L.;Vlcek B.;Wahlberg H.;Wainberg O.;Walz D.;Watson A. A.;Weber M.;Weidenhaupt K.;Weindl A.;Werner F.;Whelan B. J.;Widom A.;Wiencke L.;Wilczynska B.;Wilczynski H.;Will M.;Williams C.;Winchen T.;Wittkowski D.;Wundheiler B.;Wykes S.;Yamamoto T.;Yapici T.;Younk P.;Yuan G.;Yushkov A.;Zamorano B.;Zas E.;Zavrtanik D.;Zavrtanik M.;Zaw I.;Zepeda A.;Zhou J.;Zhu Y.;Silva M. Zimbres;Ziolkowski M.
2014-01-01
Abstract
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine 'target sets,' in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine "target sets," in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.
A flux of neutrons from an astrophysical source in the Galaxy can be detected in the Pierre Auger Observatory as an excess of cosmic-ray air showers arriving from the direction of the source. To avoid the statistical penalty for making many trials, classes of objects are tested in combinations as nine "target sets," in addition to the search for a neutron flux from the Galactic center or from the Galactic plane. Within a target set, each candidate source is weighted in proportion to its electromagnetic flux, its exposure to the Auger Observatory, and its flux attenuation factor due to neutron decay. These searches do not find evidence for a neutron flux from any class of candidate sources. Tabulated results give the combined p-value for each class, with and without the weights, and also the flux upper limit for the most significant candidate source within each class. These limits on fluxes of neutrons significantly constrain models of EeV proton emission from non-transient discrete sources in the Galaxy.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16647
Citazioni
ND
15
14
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.