Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5km)~0.04 - and shows a seasonal trend with a winter minimum - τa(3.5km)~0.03 -, and a summer maximum - τa(3.5km)~0.06 -, and an unexpected increase from August to September - τa(3.5km)~0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth τa(z)
τ
a
z
values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km)∼0.04
τ
a
3.5
k
m
0.04
- and shows a seasonal trend with a winter minimum - τa(3.5 km)∼0.03
τ
a
3.5
k
m
0.03
-, and a summer maximum - τa(3.5 km)∼0.06
τ
a
3.5
k
m
0.06
-, and an unexpected increase from August to September - τa(3.5 km)∼0.055
τ
a
3.5
k
m
0.055
). We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), while the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth tau(a)(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean tau(a)(3.5 km) similar to 0.04 - and shows a seasonal trend with a winter minimum - tau(a)(3.5 km) - 0.03 -, and a summer maximum - tau(a)(3.5 km) similar to 0.06 -, and an unexpected increase from August to September tau(a)(35 km) similar to 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas. (C) 2014 Elsevier B.V. All rights reserved.
Origin of atmospheric aerosols at the Pierre Auger Observatory using studies of air mass trajectories in South America
Aab A.;Abreu P.;Aglietta M.;Ahlers M.;Ahn E. J.;Albuquerque I. F. M.;Allekotte I.;Allen J.;Allison P.;Almela A.;Castillo J. Alvarez;Alvarez Muniz J.;Batista R. Alves;Ambrosio M.;Aminaei A.;Anchordoqui L.;Andringa S.;Antictic T.;Aramo C.;Arqueros F.;Asorey H.;Assis P.;Aublin J.;Ave M.;Avenier M.;Avila G.;Badescu A. M.;Barber K. B.;Bardenet R.;Baeuml J.;Baus C.;Beatty J. J.;Becker K. H.;Bellido J. A.;BenZvi S.;Berat C.;Bertou X.;Biermann P. L.;Billoir P.;Blanco F.;Blanco M.;Bleve C.;Bluemer H.;Bohacova M.;Boncioli D.;Bonifazi C.;Bonino R.;Borodai N.;Brack J.;Brancus I.;Brogueira P.;Brown W. C.;Buchholz P.;Bueno A.;BUSCEMI, MARIO;Caballero Mora K. S.;Caccianiga B.;Caccianiga L.;Candusso M.;Caramete L.;CARUSO, ROSSELLA;Castellina A.;Cataldi G.;Cazon L.;Cester R.;Cheng S. H.;Chiavassa A.;Chinellato J. A.;Chudoba J.;Cilmo M.;Clay R. W.;Cocciolo G.;Colalillo R.;Collica L.;Coluccia M. R.;Conceicao R.;Contreras F.;Cooper M. J.;Coutu S.;Covault C. E.;Criss A.;Cronin J.;Curutiu A.;Dallier R.;Daniel B.;Dasso S.;Daumiller K.;Dawson B. R.;De Almeida R. M.;De Domenico M.;de Jong S. J.;De La Vega G.;de Mello W. J. M. J.r.;de Mello Neto J. R. T.;De Mitri I.;de Souza V.;de Vries K. D.;del Peral L.;Deligny O.;Dembinski H.;Dhital N.;Di Giulio C.;Di Matteo A.;Diaz J. C.;Castro M. L. Diaz;Diep P. N.;Diogo F.;Dobrigkeit C.;Docters W.;D'Olivo J. C.;Dong P. N.;Dorofeev A.;dos Anjos J. C.;Dova M. T.;Ebr J.;Engel R.;Erdmann M.;Escobar C. O.;Espadanal J.;Etchegoyen A.;Luis P. Facal San;Falcke H.;Fang K.;Farrar G.;Fauth A. C.;Fazzini N.;Ferguson A. P.;Fick B.;Figueira J. M.;Filevich A.;Filipcic A.;Foerster N.;Fox B. D.;Fracchiolla C. E.;Fraenkel E. D.;Fratu O.;Froehlich U.;Fuchs B.;Gaior R.;Gamarra R. F.;Gambetta S.;Garcia B.;Roca S. T. Garcia;Garcia Gamez D.;Garcia Pinto D.;Garilli G.;Bravo A. Gascon;Gemmeke H.;Ghia P. L.;Giammarchi M.;Giller M.;Gitto J.;Glaser C.;Glass H.;Albarracin F. Gomez;Berisso M. Gomez;Vitale P. F. Gomez;Goncalves P.;Gonzalez J. G.;Gookin B.;Gorgi A.;Gorham P.;Gouffon P.;Grebe S.;Griffith N.;Grillo A. F.;Grubb T. D.;Guardincerri Y.;Guarino F.;Guedes G. P.;Hansen P.;Harari D.;Harrison T. A.;Harton J. L.;Haungs A.;Hebbeker T.;Heck D.;Herve A. E.;Hill G. C.;Hojvat C.;Hollon N.;Holt E.;Homola P.;Horandel J. R.;Horvath P.;Hrabovsky M.;Huber D.;Huege T.;INSOLIA, Antonio;Isar P. G.;Jansen S.;Jarne C.;Josebachuili M.;Kadija K.;Kambeitz O.;Kampert K. H.;Karhan P.;Kasper P.;Katkov I.;Kegl B.;Keilhauer B.;Keivani A.;Kemp E.;Kieckhafer R. M.;Klages H. O.;Kleifges M.;Kleinfeller J.;Knapp J.;Krause R.;Krohm N.;Kroemer O.;Kruppke Hansen D.;Kuempel D.;Kunka N.;La Rosa G.;LaHurd D.;Latronico L.;Lauer R.;Lauscher M.;Lautridou P.;Le Coz S.;Leao M. S. A. B.;Lebrun D.;Lebrun P.;de Oliveira M. A. Leigui;Letessier Selvon A.;Lhenry Yvon I.;Link K.;Lopez R.;Aguera A. Lopez;Louedec K.;Bahilo J. Lozano;Lu L.;Lucero A.;Ludwig M.;Lyberis H.;Maccarone M. C.;Malacari M.;Maldera S.;Mailer J.;Mandat D.;Mantsch P.;Mariazzi A. G.;Marin V.;Maris I. C.;Falcon H. R. Marquez;Marsella G.;Martello D.;Martin L.;Martinez H.;Bravo O. Martinez;Martraire D.;Meza J. J. Masias;Mathes H. J.;Matthews J.;Matthews J. I. G.;Matthiae G.;Maurel D.;Maurizio D.;Mayotte E.;Mazur P. O.;Medina C.;Medina Tanco G.;Melissas M.;Melo D.;Menichetti E.;Menshikov A.;Messina S.;Meyhandan R.;Micanovic S.;Micheletti M. I.;Middendorf L.;Minaya I. A.;Miramonti L.;Mitrica B.;Molina Bueno L.;Mollerach S.;Monasor M.;Ragaigne D. Monnier;Montanet F.;Morales B.;Morello C.;Moreno J. C.;Mostafa M.;Moura C. A.;Muller M. A.;Mueller G.;Munchmeyer M.;Mussa R.;Navarra G.;Navarro J. L.;Navas S.;Necesal P.;Nellen L.;Nelles A.;Neuser J.;Nhung P. T.;Niechciol M.;Niemietz L.;Niggemann T.;Nitz D.;Nosek D.;Nozka L.;Oehlschlaeger J.;Olinto A.;Oliveira M.;Ortiz M.;Pacheco N.;Selmi Dei D. Pakk;Palatka M.;Pallotta J.;Palmieri N.;Parente G.;Parra A.;Pastor S.;Paul T.;Pech M.;Kala J. P.;Pelayo R.;Pepe I. M.;Perrone L.;Pesce R.;Petermann E.;Petrera S.;Petrolini A.;Petrov Y.;Piegaia R.;Pierog T.;Pieroni P.;Pimenta M.;PIRRONELLO, Valerio;Platino M.;Plum M.;Pontz M.;Porcelli A.;Preda T.;Privitera P.;Prouza M.;Quel E. J.;Querchfeld S.;Quinn S.;Rautenberg J.;Ravel O.;Ravignani D.;Revenu B.;Ridky J.;Riggi S.;Risse M.;Ristori P.;Rivera H.;Rizi V.;Roberts J.;de Carvalho W. Rodrigues;Cabo I. Rodriguez;Fernandez G. Rodriguez;Martino J. Rodriguez;Rojo J. Rodriguez;Rodriguez Frias M. D.;Ros G.;Rosado J.;Rossler T.;Roth M.;Rouille d'Orfeuil B.;Roulet E.;Rovero A. C.;Ruehle C.;Saffi S. J.;Saftoiu A.;Salamida F.;Salazar H.;Greus F. Salesa;Salina G.;Sanchez F.;Sanchez Lucas P.;Santo C. E.;Santos E.;Santos E. M.;Sarazin F.;Sarkar B.;Sarmento R.;Sato R.;Scharf N.;Scherini V.;Schieler H.;Schiffer P.;Schmidt A.;Scholten O.;Schoorlemmer H.;Schovanek P.;Schroeder F. G.;Schulz A.;Schulz J.;Sciutto S. J.;Scuderi M.;Segreto A.;Settimo M.;Shadkam A.;Shellard R. C.;Sidelnik I.;Sigl G.;Sima O.;Smialkowski A.;Smida R.;Snow G. R.;Sommers P.;Sorokin J.;Spinka H.;Squartini R.;Srivastava Y. N.;Stanic S.;Stapleton J.;Stasielak J.;Stephan M.;Straub M.;Stutz A.;Suarez F.;Suomijarvi T.;Supanitsky A. D.;Susa T.;Sutherland M. S.;Swain J.;Szadkowski Z.;Szuba M.;Tapia A.;Tartare M.;Tascau O.;Thao N. T.;Tiffenberg J.;Timmermans C.;Tkaczyk W.;Peixoto C. J. Todero;Toma G.;Tomankova L.;Tome B.;Tonachini A.;Elipe G. Torralba;Machado D. Torres;Travnicek P.;Tridapalli D. B.;Trovato E.;Tueros M.;Ulrich R.;Unger M.;Galicia J. F. Valdes;Valino I.;Valore L.;van Aar G.;van den Berg A. M.;van Velzen S.;van Vliet A.;Varela E.;Cardenas B. Vargas;Varner G.;Vazquez J. R.;Vazquez R. A.;Veberic D.;Verzi V.;Vicha J.;Videla M.;Villasenor L.;Wahlberg H.;Wahrlich P.;Wainberem O.;Walz D.;Watson A. A.;Weber M.;Weidenhaupt K.;Weindl A.;Werner F.;Westerhoff S.;Whelan B. J.;Widom A.;Wieczorek G.;Wiencke L.;Wilczynska B.;Wilczynski H.;Will M.;Williams C.;Winchen T.;Wundheiler B.;Wykes S.;Yamamoto T.;Yapici T.;Younk P.;Yuan G.;Yushkov A.;Zamorano B.;Zas E.;Zavrtanik D.;Zavrtanik M.;Zaw I.;Zepeda A.;Zhou J.;Zhu Y.;Silva M. Zimbres;Ziolkowski M.;Curci G.
2014-01-01
Abstract
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyze aerosol optical depth τa(z)
τ
a
z
values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of the Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5 km)∼0.04
τ
a
3.5
k
m
0.04
- and shows a seasonal trend with a winter minimum - τa(3.5 km)∼0.03
τ
a
3.5
k
m
0.03
-, and a summer maximum - τa(3.5 km)∼0.06
τ
a
3.5
k
m
0.06
-, and an unexpected increase from August to September - τa(3.5 km)∼0.055
τ
a
3.5
k
m
0.055
). We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), while the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth τa(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean τa(3.5km)~0.04 - and shows a seasonal trend with a winter minimum - τa(3.5km)~0.03 -, and a summer maximum - τa(3.5km)~0.06 -, and an unexpected increase from August to September - τa(3.5km)~0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas.
The Pierre Auger Observatory is making significant contributions towards understanding the nature and origin of ultra-high energy cosmic rays. One of its main challenges is the monitoring of the atmosphere, both in terms of its state variables and its optical properties. The aim of this work is to analyse aerosol optical depth tau(a)(z) values measured from 2004 to 2012 at the observatory, which is located in a remote and relatively unstudied area of Pampa Amarilla, Argentina. The aerosol optical depth is in average quite low - annual mean tau(a)(3.5 km) similar to 0.04 - and shows a seasonal trend with a winter minimum - tau(a)(3.5 km) - 0.03 -, and a summer maximum - tau(a)(3.5 km) similar to 0.06 -, and an unexpected increase from August to September tau(a)(35 km) similar to 0.055. We computed backward trajectories for the years 2005 to 2012 to interpret the air mass origin. Winter nights with low aerosol concentrations show air masses originating from the Pacific Ocean. Average concentrations are affected by continental sources (wind-blown dust and urban pollution), whilst the peak observed in September and October could be linked to biomass burning in the northern part of Argentina or air pollution coming from surrounding urban areas. (C) 2014 Elsevier B.V. All rights reserved.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16855
Citazioni
ND
8
7
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.