Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85° to +20°, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm-2 s -1, and no celestial direction exceeds 0.25 eV cm-2 s -1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from –85° to +20°, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of –2, is 0.06 eV cm(–)(2) s(–)(1), and no celestial direction exceeds 0.25 eV cm(–)(2) s(–)(1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85 degrees to +20 degrees, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm(-2) s(-1), and no celestial direction exceeds 0.25 eV cm(-2) s(-1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
A SEARCH FOR POINT SOURCES OF EeV PHOTONS
Aab A.;Abreu P.;Aglietta M.;Ahlers M.;Ahn E. J.;Al Samarai I.;Albuquerque I. F. M.;Allekotte I.;Allen J.;Allison P.;Almela A.;Castillo J. Alvarez;Alvarez Muniz J.;Batista R. Alves;Ambrosio M.;Aminaei A.;Anchordoqui L.;Andringa S.;Aramo C.;Arqueros F.;Asorey H.;Assis P.;Aublin J.;Ave M.;Avenier M.;Avila G.;Badescu A. M.;Barber K. B.;Baeuml J.;Baus C.;Beatty J. J.;Becker K. H.;Bellido J. A.;Berat C.;Bertou X.;Biermann P. L.;Billoir P.;Blanco F.;Blanco M.;Bleve C.;Bluemer H.;Bohacova M.;Boncioli D.;Bonifazi C.;Bonino R.;Borodai N.;Brack J.;Brancus I.;Brogueira P.;Brown W. C.;Buchholz P.;Bueno A.;BUSCEMI, MARIO;Caballero Mora K. S.;Caccianiga B.;Caccianiga L.;Candusso M.;Caramete L.;CARUSO, ROSSELLA;Castellina A.;Cataldi G.;Cazon L.;Cester R.;Chavez A. G.;Cheng S. H.;Chiavassa A.;Chinellato J. A.;Chudoba J.;Cilmo M.;Clay R. W.;Cocciolo G.;Colalillo R.;Collica L.;Coluccia M. R.;Conceicao R.;Contreras F.;Cooper M. J.;Coutu S.;Covault C. E.;Criss A.;Cronin J.;Curutiu A.;Dallier R.;Daniel B.;Dasso S.;Daumiller K.;Dawson B. R.;de Almeida R. M.;De Domenico M.;de Jong S. J.;Neto J. R. T. de Mello;De Mitri I.;de Oliveira J.;de Souza V.;del Peral L.;Deligny O.;Dembinski H.;Dhital N.;Di Giulio C.;Di Matteo A.;Diaz J. C.;Castro M. L. Diaz;Diep P. N.;Diogo F.;Dobrigkeit C.;Docters W.;D'Olivo J. C.;Dong P. N.;Dorofeev A.;Hasankiadeh Q. Dorosti;Dova M. T.;Ebr J.;Engel R.;Erdmann M.;Erfani M.;Escobar C. O.;Espadanal J.;Etchegoyen A.;Luis P. Facal San;Falcke H.;Fang K.;Farrar G.;Fauth A. C.;Fazzini N.;Ferguson A. P.;Fernandes M.;Fick B.;Figueira J. M.;Filevich A.;Filipcic A.;Fox B. D.;Fratu O.;Froehlich U.;Fuchs B.;Fuji T.;Gaior R.;Garcia B.;Garcia Roca S. T.;Garcia Gamez D.;Garcia Pinto D.;Garilli G.;Bravo A. Gascon;Gate F.;Gemmeke H.;Ghia P. L.;Giaccari U.;Giammarchi M.;Giller M.;Glaser C.;Glass H.;Albarracin F. Gomez;Gomez Berisso M.;Gomez Vitale P. F.;Goncalves P.;Gonzalez J. G.;Gookin B.;Gorgi A.;Gorham P.;Gouffon P.;Grebe S.;Griffith N.;Grillo A. F.;Grubb T. D.;Guardincerri Y.;Guarino F.;Guedes G. P.;Hansen P.;Harari D.;Harrison T. A.;Harton J. L.;Haungs A.;Hebbeker T.;Heck D.;Heimann P.;Herve A. E.;Hill G. C.;Hojvat C.;Hollon N.;Holt E.;Homola P.;Hoerandel J. R.;Horvath P.;Hrabovsky M.;Huber D.;Huege T.;INSOLIA, Antonio;Isar P. G.;Islo K.;Jandt I.;Jansen S.;Jarne C.;Josebachuili M.;Kaeaepae A.;Kambeitz O.;Kampert K. H.;Kasper P.;Katkov I.;Kegl B.;Keilhauer B.;Keivani A.;Kemp E.;Kieckhafer R. M.;Klages H. O.;Kleifges M.;Kleinfeller J.;Krause R.;Krohm N.;Kroemer O.;Kruppke Hansen D.;Kuempel D.;Kunka N.;La Rosa G.;LaHurd D.;Latronico L.;Lauer R.;Lauscher M.;Lautridou P.;Le Coz S.;Leao M. S. A. B.;Lebrun D.;Lebrun P.;de Oliveira M. A. Leigui;Letessier Selvon A.;Lhenry Yvon I.;Link K.;Lopez R.;Aguera A. Lopez;Louedec K.;Bahilo J. Lozano;Lu L.;Lucero A.;Ludwig M.;Lyberis H.;Maccarone M. C.;Malacari M.;Maldera S.;Maller J.;Mandat D.;Mantsch P.;Mariazzi A. G.;Marin V.;Maris I. C.;Marsella G.;Martello D.;Martin L.;Martinez H.;Bravo O. Martinez;Martraire D.;Meza J. J. Masias;Mathes H. J.;Mathys S.;Matthews A. J.;Matthews J.;Matthiae G.;Maurel D.;Maurizio D.;Mayotte E.;Mazur P. O.;Medina C.;Medina Tanco G.;Melissas M.;Melo D.;Menichetti E.;Menshikov A.;Messina S.;Meyhandan R.;Micanovic S.;Micheletti M. I.;Middendorf L.;Minaya I. A.;Miramonti L.;Mitrica B.;Molina Bueno L.;Mollerach S.;Monasor M.;Ragaigne D. Monnier;Montanet F.;Morello C.;Moreno J. C.;Mostafa M.;Moura C. A.;Muller M. A.;Mueller G.;Muenchmeyer M.;Mussa R.;Navarra G.;Navas S.;Necesal P.;Nellen L.;Nelles A.;Neuser J.;Niechciol M.;Niemietz L.;Niggemann T.;Nitz D.;Nosek D.;Novotny V.;Nozka L.;Ochilo L.;Olinto A.;Oliveira M.;Ortiz M.;Pacheco N.;Selmi Dei D. Pakk;Palatka M.;Pallotta J.;Palmieri N.;Papenbreer P.;Parente G.;Parra A.;Pastor S.;Paul T.;Pech M.;Pekala J.;Pelayo R.;Pepe I. M.;Perrone L.;Pesce R.;Petermann E.;Peters C.;Petrera S.;Petrolini A.;Petrov Y.;Piegaia R.;Pierog T.;Pieroni P.;Pimenta M.;PIRRONELLO, Valerio;Platino M.;Plum M.;Porcelli A.;Porowski C.;Privitera P.;Prouza M.;Purrello V.;Quel E. J.;Querchfeld S.;Quinn S.;Rautenberg J.;Ravel O.;Ravignani D.;Revenu B.;Ridky J.;Riggi S.;Risse M.;Ristori P.;Rizi V.;Roberts J.;de Carvalho W. Rodrigues;Cabo I. Rodriguez;Fernandez G. Rodriguez;Rojo J. Rodriguez;Rodriguez Frias M. D.;Ros G.;Rosado J.;Rossler T.;Roth M.;Roulet E.;Rovero A. C.;Ruehle C.;Saffi S. J.;Saftoiu A.;Salamida F.;Salazar H.;Greus F. Salesa;Salina G.;Sanchez F.;Sanchez Lucas P.;Santo C. E.;Santos E.;Santos E. M.;Sarazin F.;Sarkar B.;Sarmento R.;Sato R.;Scharf N.;Scherini V.;Schieler H.;Schiffer P.;Schmidt A.;Scholten O.;Schoorlemmer H.;Schovanek P.;Schulz A.;Schulz J.;Sciutto S. J.;Segreto A.;Settimo M.;Shadkam A.;Shellard R. C.;Sidelnik I.;Sigl G.;Sima O.;Smialkowski A.;Smida R.;Snow G. R.;Sommers P.;Sorokin J.;Squartini R.;Srivastava Y. N.;Stanic S.;Stapleton J.;Stasielak J.;Stephan M.;Stutz A.;Suarez F.;Suomijaervi T.;Supanitsky A. D.;Sutherland M. S.;Swain J.;Szadkowski Z.;Szuba M.;Taborda O. A.;Tapia A.;Tartare M.;Thao N. T.;Theodoro V. M.;Tiffenberg J.;Timmermans C.;Peixoto C. J. Todero;Toma G.;Tomankova L.;Tome B.;Tonachini A.;Elipe G. Torralba;Machado D. Torres;Travnicek P.;Trovato E.;Tueros M.;Ulrich R.;Unger M.;Urban M.;Valdes Galicia J. F.;Valino I.;Valore L.;van Aar G.;van den Berg A. M.;van Velzen S.;van Vliet A.;Varela E.;Cardenas B. Vargas;Varner G.;Vazquez J. R.;Vazquez R. A.;Veberic D.;Verzi V.;Vicha J.;Videla M.;Villasenor L.;Vlcek B.;Vorobiov S.;Wahlberg H.;Wainberg O.;Walz D.;Watson A. A.;Weber M.;Weidenhaupt K.;Weindl A.;Werner F.;Whelan B. J.;Widom A.;Wiencke L.;Wilczynska B.;Wilczynski H.;Will M.;Williams C.;Winchen T.;Wittkowski D.;Wundheiler B.;Wykes S.;Yamamoto T.;Yapici T.;Younk P.;Yuan G.;Yushkov A.;Zamorano B.;Zas E.;Zavrtanik D.;Zavrtanik M.;Zaw I.;Zepeda A.;Zhou J.;Zhu Y.;Silva M. Zimbres;Ziolkowski M.
2014-01-01
Abstract
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from –85° to +20°, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of –2, is 0.06 eV cm(–)(2) s(–)(1), and no celestial direction exceeds 0.25 eV cm(–)(2) s(–)(1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85° to +20°, in an energy range from 1017.3 eV to 1018.5 eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm-2 s -1, and no celestial direction exceeds 0.25 eV cm-2 s -1. These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy
Measurements of air showers made using the hybrid technique developed with the fluorescence and surface detectors of the Pierre Auger Observatory allow a sensitive search for point sources of EeV photons anywhere in the exposed sky. A multivariate analysis reduces the background of hadronic cosmic rays. The search is sensitive to a declination band from -85 degrees to +20 degrees, in an energy range from 10(17.3) eV to 10(18.5) eV. No photon point source has been detected. An upper limit on the photon flux has been derived for every direction. The mean value of the energy flux limit that results from this, assuming a photon spectral index of -2, is 0.06 eV cm(-2) s(-1), and no celestial direction exceeds 0.25 eV cm(-2) s(-1). These upper limits constrain scenarios in which EeV cosmic ray protons are emitted by non-transient sources in the Galaxy.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16858
Citazioni
ND
31
30
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.