Abstract Retinoblastoma is the most common intraocular tumour in children. In view of understanding the molecular mechanisms through which angiogenic switch on happens in the early phases of reciprocal interaction between tumour and cells constituting retinal microvessel, Transwell co-cultures constituted by human retinal endothelial cells (HREC), pericytes (HRPC), and human retinoblastoma cell line Y-79 were performed. Y-79 enhanced HREC proliferation, reduced by the introduction of HRPC in triple culture. In HREC/HRPC cultures, TGF-β in media increased, decreasing in triple cultures. High VEGF levels in triple cultures witnessed the establishment of a strongly in vitro angiogenic environment. Y-79 induced in HREC an increase in c- and iPLA2, phospho-cPLA2, inducible COX-2 protein expressions, PLA2 activities and prostaglandin E2 (PGE2) release. These effects were attenuated when HRPC were introduced in triple culture. Moreover, antibody silencing of TGF-β demonstrated a strong correlation between the signalling pathway triggered by TGF-β of pericytal origin and the phospholipase activation and the modulation of PGE2 release. Inhibiting VEGFA effect, the HRPC loss in triple culture decreased, showing its modulatory effect on their survival. Relying on the data here presented, sustaining the pericytal survival in a tumour retinal environment could ensure the integrity of microvessels and the TGF-β supply, essential for controlling aberrant endothelial pruning and angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

An in vitro retinoblastoma human triple culture model of angiogenesis: A modulatory effect of TGF-β

LUPO, Gabriella;SALMERI, Mario;ANFUSO, CARMELINA DANIELA
2014

Abstract

Abstract Retinoblastoma is the most common intraocular tumour in children. In view of understanding the molecular mechanisms through which angiogenic switch on happens in the early phases of reciprocal interaction between tumour and cells constituting retinal microvessel, Transwell co-cultures constituted by human retinal endothelial cells (HREC), pericytes (HRPC), and human retinoblastoma cell line Y-79 were performed. Y-79 enhanced HREC proliferation, reduced by the introduction of HRPC in triple culture. In HREC/HRPC cultures, TGF-β in media increased, decreasing in triple cultures. High VEGF levels in triple cultures witnessed the establishment of a strongly in vitro angiogenic environment. Y-79 induced in HREC an increase in c- and iPLA2, phospho-cPLA2, inducible COX-2 protein expressions, PLA2 activities and prostaglandin E2 (PGE2) release. These effects were attenuated when HRPC were introduced in triple culture. Moreover, antibody silencing of TGF-β demonstrated a strong correlation between the signalling pathway triggered by TGF-β of pericytal origin and the phospholipase activation and the modulation of PGE2 release. Inhibiting VEGFA effect, the HRPC loss in triple culture decreased, showing its modulatory effect on their survival. Relying on the data here presented, sustaining the pericytal survival in a tumour retinal environment could ensure the integrity of microvessels and the TGF-β supply, essential for controlling aberrant endothelial pruning and angiogenesis. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.
Cytosolic and calcium-independent PLA(2); Human retinal microvascular endothelial cells; Human retinal microvascular pericytes, Retinoblastoma, TGF-β
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: http://hdl.handle.net/20.500.11769/16926
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 24
social impact