Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
The Pierre Auger Observatory in Malarg ̈ e, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
Techniques for measuring aerosol attenuation using the Central Laser Facility at the Pierre Auger Observatory
Abreu P.;Aglietta M.;Ahlers M.;Ahn E. J.;Albuquerque I. F. M.;Allekotte I.;Allen J.;Allison P.;Almela A.;Castillo J. Alvarez;Alvarez Muniz J.;Batista R. Alves;Ambrosio M.;Aminaei A.;Anchordoqui L.;Andringa S.;Anticic T.;ARAMO, Carla;Arqueros F.;Asorey H.;Assis P.;Aublin J.;Ave M.;Avenier M.;Avila G.;Badescu A. M.;Barber K. B.;Barbosa A. F.;Bardenet R.;Baughman B.;Bauml J.;Baus C.;Beatty J. J.;Becker K. H.;Belletoile A.;Bellido J. A.;BenZvi S.;Berat C.;Bertou X.;Biermann P. L.;Billoir P.;Blanco F.;Blanco M.;Bleve C.;Blumer H.;Bohacova M.;Boncioli D.;Bonifazi C.;Bonino R.;Borodai N.;Brack J.;Brancus I.;Brogueira P.;Brown W. C.;Buchholz P.;Bueno A.;Buroker L.;Burton R. E.;BUSCEMI, MARIO;Caballero Mora K. S.;Caccianiga B.;Caccianiga L.;Caramete L.;CARUSO, ROSSELLA;Castellina A.;Cataldi G.;Cazon L.;Cester R.;Cheng S. H.;Chiavassa A.;Chinellato J. A.;Chudoba J.;Cilmo M.;Clay R. W.;Cocciolo G.;Coco M.;Colalillo R.;Collica L.;Coluccia M. R.;Conceicao R.;Contreras F.;Cook H.;Cooper M. J.;Coutu S.;Covault C. E.;Criss A.;Cronin J.;Curutiu A.;Dallier R.;Daniel B.;Dasso S.;Daumiller K.;Dawson B. R.;de Almeida R. M.;De Domenico M.;de Jong S. J.;De La Vega G.;de Mello W. J. M. J.r.;de Mello Neto J. R. T.;De Mitri I.;de Souza V.;de Vries K. D.;del Peral L.;Deligny O.;Dembinski H.;Dhital N.;Di Giulio C.;Diaz J. C.;Castro M. L. Diaz;Diep P. N.;Diogo F.;Dobrigkeit C.;Docters W.;D'Olivo J. C.;Dong P. N.;Dorofeev A.;dos Anjos J. C.;Dova M. T.;D'Urso D.;Ebr J.;Engel R.;Erdmann M.;Escobar C. O.;Espadanal J.;Etchegoyen A.;Luis P. Facal San;Falcke H.;Fang K.;Farrar G.;Fauth A. C.;Fazzini N.;Ferguson A. P.;Fick B.;Figueira J. M.;Filevich A.;Filipcic A.;Fliescher S.;Fox B. D.;Fracchiolla C. E.;Fraenkel E. D.;Fratu O.;Frohlich U.;Fuchs B.;Gaior R.;Gamarra R. F.;Gambetta S.;Garcia B.;Roca S. T. Garcia;Garcia Gamez D.;Garcia Pinto D.;Garilli G.;Bravo A. Gascon;Gemmeke H.;Ghia P. L.;Giller M.;Gitto J.;Glaser C.;Glass H.;Golup G.;Albarracin F. Gomez;Berisso M. Gomez;Vitale P. F. Gomez;Goncalves P.;Gonzalez J. G.;Gookin B.;Gorgi A.;Gorham P.;Gouffon P.;Grebe S.;Griffith N.;Grillo A. F.;Grubb T. D.;Guardincerri Y.;Guarino F.;Guedes G. P.;Hansen P.;Harari D.;Harrison T. A.;Harton J. L.;Haungs A.;Hebbeker T.;Heck D.;Herve A. E.;Hill G. C.;Hojvat C.;Hollon N.;Holmes V. C.;Homola P.;Horandel J. R.;Horvath P.;Hrabovsky M.;Huber D.;Huege T.;INSOLIA, Antonio;Jansen S.;Jarne C.;Jiraskova S.;Josebachuili M.;Kadija K.;Kampert K. H.;Karhan P.;Kasper P.;Katkov I.;Kegl B.;Keilhauer B.;Keivani A.;Kelley J. L.;Kemp E.;Kieckhafer R. M.;Klages H. O.;Kleifges M.;Kleinfeller J.;Knapp J.;Krause R.;Krohm N.;Kromer O.;Kruppke Hansen D.;Kuempel D.;Kulbartz J. K.;Kunka N.;La Rosa G.;LaHurd D.;Latronico L.;Lauer R.;Lauscher M.;Lautridou P.;Le Coz S.;Leao M. S. A. B.;Lebrun D.;Lebrun P.;de Oliveira M. A. Leigui;Letessier Selvon A.;Lhenry Yvon I.;Link K.;Lopez R.;Aguera A. Lopez;Louedec K.;Bahilo J. Lozano;Lu L.;Lucero A.;Ludwig M.;Lyberis H.;Maccarone M. C.;Macolino C.;Malacari M.;Maldera S.;Maller J.;Mandat D.;Mantsch P.;Mariazzi A. G.;Marin J.;Marin V.;Maris I. C.;Falcon H. R. Marquez;Marsella G.;Martello D.;Martin L.;Martinez H.;Bravo O. Martinez;Martraire D.;Meza J. J. Masias;Mathes H. J.;Matthews J.;Matthews J. A. J.;Matthiae G.;Maurel D.;Maurizio D.;Mayotte E.;Mazur P. O.;Medina Tanco G.;Melissas M.;Melo D.;Menichetti E.;Menshikov A.;Messina S.;Meyhandan R.;Micanovic S.;Micheletti M. I.;Middendorf L.;Minaya I. A.;Miramonti L.;Mitrica B.;Molina Bueno L.;Mollerach S.;Monasor M.;Ragaigne D. Monnier;Montanet F.;Morales B.;Morello C.;Moreno J. C.;Mostafa M.;Moura C. A.;Muller M. A.;Muller G.;Munchmeyer M.;Mussa R.;Navarra G.;Navarro J. L.;Navas S.;Necesal P.;Nellen L.;Nelles A.;Neuser J.;Nhung P. T.;Niechciol M.;Niemietz L.;Nierstenhoefer N.;Niggemann T.;Nitz D.;Nosek D.;Nozka L.;Oehlschlager J.;Olinto A.;Oliveira M.;Ortiz M.;Pacheco N.;Selmi Dei D. Pakk;Palatka M.;Pallotta J.;Palmieri N.;Parente G.;Parra A.;Pastor S.;Paul T.;Pech M.;Pekala J.;Pelayo R.;Pepe I. M.;Perrone L.;Pesce R.;Petermann E.;Petrera S.;Petrolini A.;Petrov Y.;Pfendner C.;Piegaia R.;Pierog T.;Pieroni P.;Pimenta M.;PIRRONELLO, Valerio;Platino M.;Plum M.;Ponce V. H.;Pontz M.;Porcelli A.;Privitera P.;Prouza M.;Quel E. J.;Querchfeld S.;Rautenberg J.;Ravel O.;Ravignani D.;Revenu B.;Ridky J.;Riggi S.;Risse M.;Ristori P.;Rivera H.;Rizi V.;Roberts J.;Roberts M. D.;de Carvalho W. Rodrigues;Cabo I. Rodriguez;Fernandez G. Rodriguez;Martino J. Rodriguez;Rojo J. Rodriguez;Rodriguez Frias M. D.;Ros G.;Rosado J.;Rossler T.;Roth M.;Rouille d'Orfeuil B.;Roulet E.;Rovero A. C.;Ruhle C.;Saffi S. J.;Saftoiu A.;Salamida F.;Salazar H.;Greus F. Salesa;Salina G.;Sanchez F.;Santo C. E.;Santos E.;Santos E. M.;Sarazin F.;Sarkar B.;Sato R.;Scharf N.;Scherini V.;Schieler H.;Schiffer P.;Schmidt A.;Scholten O.;Schoorlemmer H.;Schovancova J.;Schovanek P.;Schroder F. G.;Schulz J.;Schuster D.;Sciutto S. J.;Scuderi M.;Segreto A.;Settimo M.;Shadkam A.;Shellard R. C.;Sidelnik I.;Sigl G.;Sima O.;Smialkowski A.;Smida R.;Snow G. R.;Sommers P.;Sorokin J.;Spinka H.;Squartini R.;Srivastava Y. N.;Stanic S.;Stapleton J.;Stasielak J.;Stephan M.;Straub M.;Stutz A.;Suarez F.;Suomijarvi T.;Supanitsky A. D.;Susa T.;Sutherland M. S.;Swain J.;Szadkowski Z.;Szuba M.;Tapia A.;Tartare M.;Tascau O.;Tcaciuc R.;Thao N. T.;Thomas D.;Tiffenberg J.;Timmermans C.;Tkaczyk W.;Peixoto C. J. Todero;Toma G.;Tomankova L.;Tome B.;Tonachini A.;Elipe G. Torralba;Machado D. Torres;Travnicek P.;Tridapalli D. B.;Trovato E.;Tueros M.;Ulrich R.;Unger M.;Urban M.;Galicia J. F. Valdes;Valino I.;Valore L.;van Aar G.;van den Berg A. M.;van Velzen S.;van Vliet A.;Varela E.;Cardenas B. Vargas;Varner G.;Vazquez J. R.;Vazquez R. A.;Veberic D.;Verzi V.;Vicha J.;Videla M.;Villasenor L.;Wahlberg H.;Wahrlich P.;Wainberg O.;Walz D.;Watson A. A.;Weber M.;Weidenhaupt K.;Weindl A.;Werner F.;Westerhoff S.;Whelan B. J.;Widom A.;Wieczorek G.;Wiencke L.;Wilczynska B.;Wilczynski H.;Will M.;Williams C.;Winchen T.;Wundheiler B.;Yamamoto T.;Yapici T.;Younk P.;Yuan G.;Yushkov A.;Garcia B. Zamorano;Zas E.;Zavrtanik D.;Zavrtanik M.;Zaw I.;Zepeda A.;Zhou J.;Zhu Y.;Silva M. Zimbres;Ziolkowski M.
2013-01-01
Abstract
The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
The Pierre Auger Observatory in Malarg ̈ e, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 1018 eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
The Pierre Auger Observatory in Malargue, Argentina, is designed to study the properties of ultra-high energy cosmic rays with energies above 10(18) eV. It is a hybrid facility that employs a Fluorescence Detector to perform nearly calorimetric measurements of Extensive Air Shower energies. To obtain reliable calorimetric information from the FD, the atmospheric conditions at the observatory need to be continuously monitored during data acquisition. In particular, light attenuation due to aerosols is an important atmospheric correction. The aerosol concentration is highly variable, so that the aerosol attenuation needs to be evaluated hourly. We use light from the Central Laser Facility, located near the center of the observatory site, having an optical signature comparable to that of the highest energy showers detected by the FD. This paper presents two procedures developed to retrieve the aerosol attenuation of fluorescence light from CLF laser shots. Cross checks between the two methods demonstrate that results from both analyses are compatible, and that the uncertainties are well understood. The measurements of the aerosol attenuation provided by the two procedures are currently used at the Pierre Auger Observatory to reconstruct air shower data.
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16932
Citazioni
ND
27
20
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.