This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.

Free vibrations of spatial Timoshenko arches

CALIO', Ivo Domenico;GRECO, Annalisa;
2014-01-01

Abstract

This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.
2014
Arches; Equations of motion; Finite element method; Natural frequencies; Particle beams; Stiffness; Thin walled structures
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/16990
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 27
  • ???jsp.display-item.citation.isi??? 23
social impact