Harpagophytum procumbens (H. procumbens), also known as Devil's Claw, has been used to treat a wide range of pathological conditions, including pain, arthritis and inflammation. Inflammatory mediators, released at the site of injury, can sensitize nociceptive terminals and are responsible for allodynia and hyperalgesia. Carbon monoxide (CO), produced in a reaction catalyzed by the enzyme heme oxygenase (HO), may play a role in nociceptive processing and has also been recognized to act as a neurotransmitter or neuromodulator in the nervous system. This study was designed to investigate whether the HO/CO pathway is involved in the analgesic response of H. procumbens in carrageenan-induced hyperalgesia in rats. Mechanical allodynia and thermal hyperalgesia were evaluated by using von Frey filaments and the plantar test, respectively. The results of our experiments showed that pretreatment with the HO inhibitor ZnPP IX significantly decreased the antihyperalgesic effect produced by H. procumbens (800 mg/kg, i.p.) in carrageenan-injected rats. Consistently, the pretreatment with hemin, a HO-1 substrate, or CORM-3, a CO releasing molecule, before a low dose of H. procumbens (300 mg/kg, i.p.) induced a clear antiallodynic response in carrageenan injected rats. These results suggest the involvement of HO-1/CO system in the antiallodynic and antihyperalgesic effect of H. procumbens in carrageenan-induced inflammatory pain.

Involvement of the Heme-Oxygenase Pathway in the Antiallodynic and Antihyperalgesic Activity of Harpagophytum procumbens in Rats.

PARENTI, Carmela;CHIECHIO, SANTINA;Di Benedetto G.;PARENTI, Rosalba;SCOTO, Giovanna Maria
2015

Abstract

Harpagophytum procumbens (H. procumbens), also known as Devil's Claw, has been used to treat a wide range of pathological conditions, including pain, arthritis and inflammation. Inflammatory mediators, released at the site of injury, can sensitize nociceptive terminals and are responsible for allodynia and hyperalgesia. Carbon monoxide (CO), produced in a reaction catalyzed by the enzyme heme oxygenase (HO), may play a role in nociceptive processing and has also been recognized to act as a neurotransmitter or neuromodulator in the nervous system. This study was designed to investigate whether the HO/CO pathway is involved in the analgesic response of H. procumbens in carrageenan-induced hyperalgesia in rats. Mechanical allodynia and thermal hyperalgesia were evaluated by using von Frey filaments and the plantar test, respectively. The results of our experiments showed that pretreatment with the HO inhibitor ZnPP IX significantly decreased the antihyperalgesic effect produced by H. procumbens (800 mg/kg, i.p.) in carrageenan-injected rats. Consistently, the pretreatment with hemin, a HO-1 substrate, or CORM-3, a CO releasing molecule, before a low dose of H. procumbens (300 mg/kg, i.p.) induced a clear antiallodynic response in carrageenan injected rats. These results suggest the involvement of HO-1/CO system in the antiallodynic and antihyperalgesic effect of H. procumbens in carrageenan-induced inflammatory pain.
Harpagophytum procumbens; allodynia hyperalgesia; rat
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/17324
Citazioni
  • ???jsp.display-item.citation.pmc??? 5
  • Scopus 11
  • ???jsp.display-item.citation.isi??? 10
social impact