We tested the ability of dopamine, apomorphine, phenylethylamine and pergolide to inhibit the proliferation of fetal calf serum-stimulated human breast cancer (MCF)-7 cells. While the first three compounds were able to block the proliferation of MCF-7 cells, pergolide failed to do so (up to 100 μM). The inhibitory effect of dopamine, apomorphine and phenylethylamine was also evident in serum-starved insulin-stimulated MCF-7 cells. Apomorphine also inhibited the proliferation of the human oestrogen receptor-negative breast cancer (MDA-MB231) and prostate carcinoma (LNCaP) cell lines. In a second set of experiments, we measured the ability of dopamine, apomorphine, phenylethylamine and pergolide to inhibit the phosphorylation (or increase the dephosphorylation) of the insulin receptor substrate (IRS)-1, a major intracellular substrate of the insulin-like growth factor (IGF)-1 receptor. Dopamine, apomorphine and phenylethylamine all reduced to zero the level of phosphorylated IRS-1 with potencies ranging between 0.01 and 1 μM. Finally, we found that fibroblasts from IRS-1 null (-/-) mice were less sensitive to the anti-proliferative effect of apomorphine compared to fibroblasts from wild type-mice, suggesting that the inhibition of IRS-1 phosphorylation by apomorphine is an important aspect of the activity of this compound

Apomorphine, dopamine and phenylethylamine inhibit the phopsphorylation of the insulin receptor substrate 1

BERNARDINI, Renato;
2001-01-01

Abstract

We tested the ability of dopamine, apomorphine, phenylethylamine and pergolide to inhibit the proliferation of fetal calf serum-stimulated human breast cancer (MCF)-7 cells. While the first three compounds were able to block the proliferation of MCF-7 cells, pergolide failed to do so (up to 100 μM). The inhibitory effect of dopamine, apomorphine and phenylethylamine was also evident in serum-starved insulin-stimulated MCF-7 cells. Apomorphine also inhibited the proliferation of the human oestrogen receptor-negative breast cancer (MDA-MB231) and prostate carcinoma (LNCaP) cell lines. In a second set of experiments, we measured the ability of dopamine, apomorphine, phenylethylamine and pergolide to inhibit the phosphorylation (or increase the dephosphorylation) of the insulin receptor substrate (IRS)-1, a major intracellular substrate of the insulin-like growth factor (IGF)-1 receptor. Dopamine, apomorphine and phenylethylamine all reduced to zero the level of phosphorylated IRS-1 with potencies ranging between 0.01 and 1 μM. Finally, we found that fibroblasts from IRS-1 null (-/-) mice were less sensitive to the anti-proliferative effect of apomorphine compared to fibroblasts from wild type-mice, suggesting that the inhibition of IRS-1 phosphorylation by apomorphine is an important aspect of the activity of this compound
File in questo prodotto:
File Dimensione Formato  
Apomorphine, dopamine and phenylethylamine.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Dimensione 462.79 kB
Formato Adobe PDF
462.79 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/179
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 10
social impact