Attenzione: i dati modificati non sono ancora stati salvati. Per confermare inserimenti o cancellazioni di voci è necessario confermare con il tasto SALVA/INSERISCI in fondo alla pagina
IRIS
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are
detectable with the Surface Detector array (SD) of the Pierre Auger
Observatory. We report here on searches through Auger data from 1
January 2004 until 20 June 2013. No neutrino candidates were found,
yielding a limit to the diffuse flux of ultrahigh energy neutrinos that
challenges the Waxman-Bahcall bound predictions. Neutrino identification
is attempted using the broad time structure of the signals expected in
the SD stations, and is efficiently done for neutrinos of all flavors
interacting in the atmosphere at large zenith angles, as well as for
``Earth-skimming{''} neutrino interactions in the case of tau neutrinos.
In this paper the searches for downward-going neutrinos in the zenith
angle bins 60 degrees-75 degrees and 75 degrees-90 degrees as well as
for upward-going neutrinos, are combined to give a single limit. The
90\% C.L. single-flavor limit to the diffuse flux of ultrahigh energy
neutrinos with an E-2 spectrum in the energy range 1.0 x 10(17) eV-2.5 x
10(19) eV is E(nu)(2)dN(nu)/dE(nu) < 6.4 x 10(-9) GeV cm(-2) s(-1)
sr(-1).
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60 degrees-75 degrees and 75 degrees-90 degrees as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 x 10(17) eV-2.5 x 10(19) eV is E(nu)(2)dN(nu)/dE(nu) < 6.4 x 10(-9) GeV cm(-2) s(-1) sr(-1).
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60 degrees-75 degrees and 75 degrees-90 degrees as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 x 10(17) eV-2.5 x 10(19) eV is E(nu)(2)dN(nu)/dE(nu) < 6.4 x 10(-9) GeV cm(-2) s(-1) sr(-1).
Improved limit to the diffuse flux of ultrahigh energy neutrinos from the Pierre Auger Observatory
Aab A.;Abreu P.;Aglietta M.;Ahn E. J.;Al Samarai I.;Albuquerque I. F. M.;Allekotte I.;Allison P.;Almela A.;Castillo J. Alvarez;Alvarez Muniz J.;Batista R. Alves;Ambrosio M.;Aminaei A.;Anchordoqui L.;Andringa S.;Aramo C.;Aranda V. M.;Arqueros F.;Arsene N.;Asorey H.;Assis P.;Aublin J.;Ave M.;Avenier M.;Avila G.;Awal N.;Badescu A. M.;Barber K. B.;Baeuml J.;Baus C.;Beatty J. J.;Becker K. H.;Bellido J. A.;Berat C.;Bertaina M. E.;Bertou X.;Biermann P. L.;Billoir P.;Blaess S. G.;Blanco A.;Blanco M.;Bleve C.;Bluemer H.;Bohacova M.;Boncioli D.;Bonifazi C.;Borodi N.;Brack J.;Brancus I.;Bridgeman A.;Brogueira P.;Brown W. C.;Buchholz P.;Bueno A.;Buitink S.;BUSCEMI, MARIO;Caballero Mora K. S.;Caccianiga B.;Caccianiga L.;Candusso M.;Caramete L.;CARUSO, ROSSELLA;Castellina A.;Cataldi G.;Cazon L.;Cester R.;Chavez A. G.;Chiavassa A.;Chinellato J. A.;Chudoba J.;Cilmo M.;Clay R. W.;Cocciolo G.;Colalillo R.;Coleman A.;Collica L.;Coluccia M. R.;Conceicao R.;Contreras F.;Cooper M. J.;Cordier A.;Coutu S.;Covault C. E.;Cronin J.;Dallier R.;Daniel B.;Dasso S.;Daumiller K.;Dawson B. R.;de Almeida R. M.;de Jong S. J.;De Mauro G.;de Mello Neto J. R. T.;De Mitri I.;de Oliveira J.;de Souza V.;del Peral L.;Deligny O.;Dembinski H.;Dhital N.;Di Giulio C.;Di Matteo A.;Diaz J. C.;Castro M. L. Diaz;Diogo F.;Dobrigkeit C.;Docters W.;D'Olivo J. C.;Dorofeev A.;Hasankiadeh Q. Dorosti;Dova M. T.;Ebr J.;Enge R.;Erdmann M.;Erfani M.;Escobar C. O.;Espadanal J.;Etchegoyen A.;Falcke H.;Fang K.;Farrar G.;Fauth A. C.;Fazzini N.;Ferguson A. P.;Fernandes M.;Fick B.;Figueira J. M.;Filevich A.;Filipcic A.;Fox B. D.;Fratu O.;Freire M. M.;Fuchs B.;Fujii T.;Garcia B.;Garcia Pinto D.;Gate F.;Gemmeke H.;Gherghel Lascu A.;Ghia P. L.;Giaccari U.;Giammarchi M.;Giller M.;Glas D.;Glaser C.;Glass H.;Golup G.;Berisso M. Gomez;Vitale P. F. Gomez;Gonzalez N.;Gookin B.;Gordon J.;Gorgi A.;Gorham P.;Gouffon P.;Griffith N.;Grillo A. F.;Grubb T. D.;Guardincerri Y.;Guarino F.;Guedes G. P.;Hampe M. R.;Hansen P.;Harari D.;Harrison T. A.;Hartmann S.;Harton J. L.;Haungs A.;Hebbeker T.;Heck D.;Heimann P.;Herve A. E.;Hi G. C.;Hojvat C.;Hollon N.;Holt E.;Homola P.;Horande J. R.;Horvath P.;Hrabovsky M.;Huber D.;Huege T.;INSOLIA, Antonio;Isar P. G.;Jandt I.;Jansen S.;Jarne C.;Johnsen J. A.;Josebachuili M.;Kaeaepae A.;Kambeitz O.;Kampert K. H.;Kasper P.;Katkov I.;Kegl B.;Keilhauer B.;Keivani A.;Kemp E.;Kieckhafer R. M.;Klages H. O.;Kleifges M.;Kleinfeller J.;Krause R.;Krohm N.;Kroemer O.;Kuempel D.;Kunka N.;LaHurd D.;Latronico L.;Lauer R.;Lauscher M.;Lautridou P.;Le Coz S.;Lebrun D.;Lebrun P.;de Oliveira M. A. Leigui;Letessier Selvon A.;Lhenry Yvon I.;Link K.;Lopes L.;Lopez R.;Casado A. Lopez;Louedec K.;Lu L.;Lucero A.;Malacari M.;Maldera S.;Mallamaci M.;Maller J.;Mandat D.;Mantsch R.;Mariazzi A. G.;Mann V.;Maris I. C.;Marsella G.;Martello D.;Martin L.;Martinez H.;Bravo O. Martinez;Martraire D.;Meza J. J. Masias;Mathes H. J.;Mathys S.;Matthews J.;Matthews J. A. J.;Matthiae G.;Maurel D.;Maurizio D.;Mayotte E.;Mazur P. O.;Medina C.;Medina Tanco G.;Meissner R.;Mello V. B. B.;Melo D.;Menshikov A.;Messina S.;Meyhandan R.;Micheletti M. I.;Middendorf L.;Minaya I. A.;Miramonti L.;Mitrica B.;Molina Bueno L.;Mollerach S.;Montanet F.;Morello C.;Mostafa M.;Moura C. A.;Muller M. A.;Mueller G.;Mueller S.;Mussa R.;Navarra G.;Navarro J. L.;Navas S.;Necesal R.;Nellen L.;Nelles A.;Neuser J.;Nguyen P. H.;Niculescu Oglinzanu M.;Niechciol M.;Niemietz L.;Niggemann T.;Nitz D.;Nosek D.;Novotny V.;Nozka L.;Ochilo L.;Oikonomou F.;Olinto A.;Pacheco N.;Selmi Dei D. Pakk;Palatka M.;Pallotta J.;Papenbreer P.;Parente G.;Parra A.;Paul T.;Pech M.;Pekala J.;Pelayo R.;Pepe I. M.;Perrone L.;Petermann E.;Peters C.;Petrera S.;Petrov Y.;Phuntsok J.;Piegaia R.;Pierog T.;Pieroni P.;Pimenta M.;PIRRONELLO, Valerio;Platino M.;Plum M.;Porcelli A.;Porowski C.;Prado R. R.;Privitera P.;Prouza M.;Purrello V.;Quel E. J.;Querchfeld S.;Quinn S.;Rautenberg J.;Ravel O.;Ravignani D.;Revenu B.;Ridky J.;Riggi S.;Risse M.;Ristori P.;Rizi V.;de Carvalho W. Rodrigues;Fernandez G. Rodriguez;Rojo J. Rodriguez;Rodriguez Frias D.;Rogozin D.;Rosado J.;Roth M.;Roulet E.;Rovero A. C.;Saffi S. J.;Saftoiu A.;Salamida F.;Salazar H.;Saleh A.;Greus F. Salesa;Salina G.;Sanchez F.;Sanchez Lucas P.;Santos E.;Santos E. M.;Sarazin F.;Sarkar B.;Sarmento R.;Sato R.;Scarso C.;Schauer M.;Scherini V.;Schieler H.;Schiffer P.;Schmidt D.;Scholten O.;Schoorlemmer H.;Schovanek P.;Schroeder F. G.;Schulz A.;Schulz J.;Schumacher J.;Sciutto S. J.;Segreto A.;Settimo M.;Shadkam A.;Shellard R. C.;Sidelnik I.;Sigl G.;Sima O.;Smialkowski A.;Smida R.;Snow G. R.;Sommers P.;Sorokin J.;Sotuartini R.;Srivastava Y. N.;Stanca D.;Stanic S.;Stapleton J.;Stasielak J.;Stephan M.;Stutz A.;Suarez F.;Suomijaervi T.;Supanitsky A. D.;Sutherland M. S.;Swain J.;Szadkowski Z.;Taborda O. A.;Tapia A.;Tepe A.;Theodoro V. M.;Tiffenberg J.;Timmermans C.;Peixoto C. J. Todero;Toma G.;Tomankova L.;Tome B.;Tonachini A.;Elipe G. Torralba;Machado D. Torres;Travnicek P.;Ulrich R.;Unger M.;Urban M.;Galicia J. F. Valdes;Valino I.;Valore L.;van Aar G.;van Bodegom P.;van den Berg A. M.;van Velzen S.;van Vliet A.;Varela E.;Cardenas B. Vargas;Varner G.;Vasquez R.;Vazquez R.;Vazquez R. A.;Veberic D.;Verzi V.;Vicha J.;Videla M.;Villasenor L.;Vlcek B.;Vorobiov S.;Wahlberg H.;Wainberg O.;Walz D.;Watson A. A.;Weber M.;Weidenhaupt K.;Weindl A.;Werner F.;Widom A.;Wiencke L.;Wilczynski H.;Winchen T.;Wittkowski D.;Wundheiler B.;Wykes S.;Yang L.;Yapici T.;Yushkov A.;Zas E.;Zawtanik D.;Zavrtanik M.;Zepeda A.;Zhu Y.;Zimmermann B.;Ziolkowski M.;ZUCCARELLO, Francesca
2015-01-01
Abstract
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60 degrees-75 degrees and 75 degrees-90 degrees as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 x 10(17) eV-2.5 x 10(19) eV is E(nu)(2)dN(nu)/dE(nu) < 6.4 x 10(-9) GeV cm(-2) s(-1) sr(-1).
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are
detectable with the Surface Detector array (SD) of the Pierre Auger
Observatory. We report here on searches through Auger data from 1
January 2004 until 20 June 2013. No neutrino candidates were found,
yielding a limit to the diffuse flux of ultrahigh energy neutrinos that
challenges the Waxman-Bahcall bound predictions. Neutrino identification
is attempted using the broad time structure of the signals expected in
the SD stations, and is efficiently done for neutrinos of all flavors
interacting in the atmosphere at large zenith angles, as well as for
``Earth-skimming{''} neutrino interactions in the case of tau neutrinos.
In this paper the searches for downward-going neutrinos in the zenith
angle bins 60 degrees-75 degrees and 75 degrees-90 degrees as well as
for upward-going neutrinos, are combined to give a single limit. The
90\% C.L. single-flavor limit to the diffuse flux of ultrahigh energy
neutrinos with an E-2 spectrum in the energy range 1.0 x 10(17) eV-2.5 x
10(19) eV is E(nu)(2)dN(nu)/dE(nu) < 6.4 x 10(-9) GeV cm(-2) s(-1)
sr(-1).
Neutrinos in the cosmic ray flux with energies near 1 EeV and above are detectable with the Surface Detector array (SD) of the Pierre Auger Observatory. We report here on searches through Auger data from 1 January 2004 until 20 June 2013. No neutrino candidates were found, yielding a limit to the diffuse flux of ultrahigh energy neutrinos that challenges the Waxman-Bahcall bound predictions. Neutrino identification is attempted using the broad time structure of the signals expected in the SD stations, and is efficiently done for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for "Earth-skimming" neutrino interactions in the case of tau neutrinos. In this paper the searches for downward-going neutrinos in the zenith angle bins 60 degrees-75 degrees and 75 degrees-90 degrees as well as for upward-going neutrinos, are combined to give a single limit. The 90% C.L. single-flavor limit to the diffuse flux of ultrahigh energy neutrinos with an E-2 spectrum in the energy range 1.0 x 10(17) eV-2.5 x 10(19) eV is E(nu)(2)dN(nu)/dE(nu) < 6.4 x 10(-9) GeV cm(-2) s(-1) sr(-1).
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.
Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/18593
Citazioni
ND
169
138
social impact
Conferma cancellazione
Sei sicuro che questo prodotto debba essere cancellato?
simulazione ASN
Il report seguente simula gli indicatori relativi alla propria produzione scientifica in relazione alle soglie ASN 2023-2025 del proprio SC/SSD. Si ricorda che il superamento dei valori soglia (almeno 2 su 3) è requisito necessario ma non sufficiente al conseguimento dell'abilitazione. La simulazione si basa sui dati IRIS e sugli indicatori bibliometrici alla data indicata e non tiene conto di eventuali periodi di congedo obbligatorio, che in sede di domanda ASN danno diritto a incrementi percentuali dei valori. La simulazione può differire dall'esito di un’eventuale domanda ASN sia per errori di catalogazione e/o dati mancanti in IRIS, sia per la variabilità dei dati bibliometrici nel tempo. Si consideri che Anvur calcola i valori degli indicatori all'ultima data utile per la presentazione delle domande.
La presente simulazione è stata realizzata sulla base delle specifiche raccolte sul tavolo ER del Focus Group IRIS coordinato dall’Università di Modena e Reggio Emilia e delle regole riportate nel DM 589/2018 e allegata Tabella A. Cineca, l’Università di Modena e Reggio Emilia e il Focus Group IRIS non si assumono alcuna responsabilità in merito all’uso che il diretto interessato o terzi faranno della simulazione. Si specifica inoltre che la simulazione contiene calcoli effettuati con dati e algoritmi di pubblico dominio e deve quindi essere considerata come un mero ausilio al calcolo svolgibile manualmente o con strumenti equivalenti.