In the field of energy harvesting, it has been demonstrated that under the appropriate conditions, nonlinear configurations of the harvester can provide better performance, compared with linear resonant oscillators; the performance is quantified in terms of the amount of energy extracted from environmental mechanical or seismic vibrations. In this paper, the results of investigations on a system for energy harvesting from wideband vibrations, using a nonlinear snap-through-buckling configuration and two piezoelectric actuators, placed at the stable minima of the potential energy function that underpins the dynamics of the flexible beam are presented. A nonlinear model is proposed that can describe the device behavior when it is driven by a suprathreshold deterministic signal, a wideband noise, or a subthreshold signal superimposed onto a (usually bandlimited) noise background. In the latter case, the system is seen to exhibit the so-called "stochastic resonance" behavior. The bandwidth of the nonlinear energy harvester is about 15 Hz, which is compatible with vibrational energy sources at low frequencies, e.g., a walking human. The device is seen to generate power up to 160 mu W when subject to a noise limited at 15 Hz. The power is sufficient to operate a standard wireless sensor node and the conversion efficiency of the harvester is about 12%.
Titolo: | Performance Investigation of a Nonlinear Energy Harvester With Random Vibrations and Subthreshold Deterministic Signals |
Autori interni: | |
Data di pubblicazione: | 2017 |
Rivista: | |
Abstract: | In the field of energy harvesting, it has been demonstrated that under the appropriate conditions, nonlinear configurations of the harvester can provide better performance, compared with linear resonant oscillators; the performance is quantified in terms of the amount of energy extracted from environmental mechanical or seismic vibrations. In this paper, the results of investigations on a system for energy harvesting from wideband vibrations, using a nonlinear snap-through-buckling configuration and two piezoelectric actuators, placed at the stable minima of the potential energy function that underpins the dynamics of the flexible beam are presented. A nonlinear model is proposed that can describe the device behavior when it is driven by a suprathreshold deterministic signal, a wideband noise, or a subthreshold signal superimposed onto a (usually bandlimited) noise background. In the latter case, the system is seen to exhibit the so-called "stochastic resonance" behavior. The bandwidth of the nonlinear energy harvester is about 15 Hz, which is compatible with vibrational energy sources at low frequencies, e.g., a walking human. The device is seen to generate power up to 160 mu W when subject to a noise limited at 15 Hz. The power is sufficient to operate a standard wireless sensor node and the conversion efficiency of the harvester is about 12%. |
Handle: | http://hdl.handle.net/20.500.11769/19099 |
Appare nelle tipologie: | 1.1 Articolo in rivista |