ZnO nanorods (NRs) grown by chemical bath deposition (CBD) are among the most promising semiconducting nanostructures currently investigated for a variety of applications. Still, contrasting experimental results appear in the literature on the microscopic mechanisms leading to high aspect ratio and vertically aligned ZnO NRs. Here, we report on CBD of ZnO NRs using Zn nitrate salt and hexamethylenetetramine (HMTA), evidencing a double role of HMTA in the NRs growth mechanism. Beyond the well-established pH buffering activity, HMTA is shown to introduce a strong steric hindrance effect, biasing growth along the c-axis and ensuring the vertical arrangement. This twofold function of HMTA should be taken into account for avoiding detrimental phenomena such as merging or suppression of NRs, which occur at low HMTA concentration.
Double Role of HMTA in ZnO Nanorods Grown by Chemical Bath Deposition
CILIBERTO, Enrico;MIRABELLA, SALVATORE
2014-01-01
Abstract
ZnO nanorods (NRs) grown by chemical bath deposition (CBD) are among the most promising semiconducting nanostructures currently investigated for a variety of applications. Still, contrasting experimental results appear in the literature on the microscopic mechanisms leading to high aspect ratio and vertically aligned ZnO NRs. Here, we report on CBD of ZnO NRs using Zn nitrate salt and hexamethylenetetramine (HMTA), evidencing a double role of HMTA in the NRs growth mechanism. Beyond the well-established pH buffering activity, HMTA is shown to introduce a strong steric hindrance effect, biasing growth along the c-axis and ensuring the vertical arrangement. This twofold function of HMTA should be taken into account for avoiding detrimental phenomena such as merging or suppression of NRs, which occur at low HMTA concentration.File | Dimensione | Formato | |
---|---|---|---|
lavoro JPC C.pdf
solo gestori archivio
Licenza:
NON PUBBLICO - Accesso privato/ristretto
Dimensione
4.56 MB
Formato
Adobe PDF
|
4.56 MB | Adobe PDF | Visualizza/Apri |
I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.