The role played by the metal ion in thermodynamics of azurin folding was addressed by studying the thermal denaturation of the apo-form by differential scanning calorimetry (DSC), and by comparing the results with data concerning the holo protein. The thermal unfolding experiments showed that at 25 degrees C the presence of metal ion increases the thermodynamic stability of azurin by 24 kJ mol(-1). A comparison between the unfolding and the copper binding free energies allow us to assert that the unfolded polypeptide chain binds copper and subsequently folds into native holo azurin, being this the thermodynamically most favourable process in driving azurin folding.

Thermodynamics of azurin folding - The role of copper ion

LA ROSA, Carmelo
2008-01-01

Abstract

The role played by the metal ion in thermodynamics of azurin folding was addressed by studying the thermal denaturation of the apo-form by differential scanning calorimetry (DSC), and by comparing the results with data concerning the holo protein. The thermal unfolding experiments showed that at 25 degrees C the presence of metal ion increases the thermodynamic stability of azurin by 24 kJ mol(-1). A comparison between the unfolding and the copper binding free energies allow us to assert that the unfolded polypeptide chain binds copper and subsequently folds into native holo azurin, being this the thermodynamically most favourable process in driving azurin folding.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/20002
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 8
  • ???jsp.display-item.citation.isi??? 8
social impact