In this paper, a novel field-oriented methodology to setup real-time control (RTC) for leakage reduction by pressure control valves in water distribution networks is presented. The paper introduces modalities to address the selection of proper RTC system architecture based on the network connectivity at the valve sites. Criteria for target node identification and RTC strategy selection in case of single-control (one valve–one target node) and multiple-control (multiple valve–one target node) architectures are developed. The impact on the control performance of controller calibration and communication protocol selection procedures, and of background noise in pressure signals is also explored. Then, developed criteria and procedures are applied to a Norwegian water distribution network in which a future field-pilot RTC system will be installed. Benefits in terms of pressure control effectiveness and water leakage reduction are evaluated by simulation under different control scenarios as a basic

Field-Oriented Methodology for Real-Time Pressure Control to Reduce Leakage in Water Distribution Networks

CAMPISANO, Alberto Paolo;MODICA, Carlo;
2016-01-01

Abstract

In this paper, a novel field-oriented methodology to setup real-time control (RTC) for leakage reduction by pressure control valves in water distribution networks is presented. The paper introduces modalities to address the selection of proper RTC system architecture based on the network connectivity at the valve sites. Criteria for target node identification and RTC strategy selection in case of single-control (one valve–one target node) and multiple-control (multiple valve–one target node) architectures are developed. The impact on the control performance of controller calibration and communication protocol selection procedures, and of background noise in pressure signals is also explored. Then, developed criteria and procedures are applied to a Norwegian water distribution network in which a future field-pilot RTC system will be installed. Benefits in terms of pressure control effectiveness and water leakage reduction are evaluated by simulation under different control scenarios as a basic
2016
Real-time control, Pressure control, Leakage reduction, Valves, Controllers.
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/20091
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 42
  • ???jsp.display-item.citation.isi??? 42
social impact