Diabetic macular edema (DME) is the major cause of vision loss in patients affected by diabetic retinopathy. Hyperglycemia and hypoxia represent the key elements in the progression of these pathologies, leading to breakdown of the blood-retinal barrier (BRB). Caffeine, a psychoactive substance largely consumed in the world, is a nonselective antagonist of adenosine receptors (AR) and it possesses a protective effect in various diseases, including eye pathologies. Here, we have investigated the effect of this substance on BRB integrity following exposure to hyperglycemic/hypoxic insult. Retinal pigmented epithelial cells, ARPE-19, have been grown on semi-permeable supports mimicking an experimental model, in vitro, of outer BRB. Caffeine treatment has reduced cell monolayer permeability after exposure to high glucose and desferoxamine as shown by TEER and FITC-dextran permeability assays. This effect is also mediated through the restoration of membrane's tight junction expression, ZO-1. Moreover, we have demonstrated that caffeine is able to prevent outer BRB damage by inhibiting apoptotic cell death induced by hyperglycemic/hypoxic insult since it downregulates the proapoptotic Bax and upregulates the anti-apoptotic Bcl-2 genes. Although further studies are needed to better comprise the beneficial effect of caffeine, we can speculate that it might be used as an innovative drug for DME treatment.

Caffeine Prevents Blood Retinal Barrier Damage in a Model, In Vitro, of Diabetic Macular Edema.

Maugeri G;D'AMICO, AGATA GRAZIA;SACCONE, Salvatore;FEDERICO, CONCETTA;D'AGATA, VELIA MARIA
2017

Abstract

Diabetic macular edema (DME) is the major cause of vision loss in patients affected by diabetic retinopathy. Hyperglycemia and hypoxia represent the key elements in the progression of these pathologies, leading to breakdown of the blood-retinal barrier (BRB). Caffeine, a psychoactive substance largely consumed in the world, is a nonselective antagonist of adenosine receptors (AR) and it possesses a protective effect in various diseases, including eye pathologies. Here, we have investigated the effect of this substance on BRB integrity following exposure to hyperglycemic/hypoxic insult. Retinal pigmented epithelial cells, ARPE-19, have been grown on semi-permeable supports mimicking an experimental model, in vitro, of outer BRB. Caffeine treatment has reduced cell monolayer permeability after exposure to high glucose and desferoxamine as shown by TEER and FITC-dextran permeability assays. This effect is also mediated through the restoration of membrane's tight junction expression, ZO-1. Moreover, we have demonstrated that caffeine is able to prevent outer BRB damage by inhibiting apoptotic cell death induced by hyperglycemic/hypoxic insult since it downregulates the proapoptotic Bax and upregulates the anti-apoptotic Bcl-2 genes. Although further studies are needed to better comprise the beneficial effect of caffeine, we can speculate that it might be used as an innovative drug for DME treatment.
CAFFEINE; BLOOD-RETINAL BARRIER; DME
File in questo prodotto:
Non ci sono file associati a questo prodotto.

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/20491
Citazioni
  • ???jsp.display-item.citation.pmc??? 8
  • Scopus 22
  • ???jsp.display-item.citation.isi??? 21
social impact