In this study, we present a comparison between graphene oxide (GO) and nitrogen-doped GO (N-GO) in terms of spectroscopic properties and biomolecule-binding potentiality features. Specifically, GO nanosheets, both in aqueous dispersion and in solid state, were successfully modified with different amino-containing moieties, in order to obtain graphene-based nanostructures able to respond to chemical stimuli (e.g., pH) and with tunable surface properties. The physisorption of dye-labelled lipid vesicles loaded with curcumin, was scrutinised both theoretically and experimentally. The energetics of the hybrid lipid membrane-curcumin-GO interface at different pH values, representative respectively of physiological (7.4) and pathological (5.5) environment, were estimated by molecular dynamics (MD) simulations. The GO and GO-N samples characterization by Raman, fluorescence, and UV-vis spectroscopies, as well as confocal microscopy demonstrated promising features of the (N-)GO/lipid platforms for fluorescence imaging and drug delivery applications.

The hybrid nanobiointerface between nitrogen-doped graphene oxide and lipid membranes: a theoretical and experimental study

FORTE, GIUSEPPE;D'URSO, LUISA;SATRIANO, Cristina
2017-01-01

Abstract

In this study, we present a comparison between graphene oxide (GO) and nitrogen-doped GO (N-GO) in terms of spectroscopic properties and biomolecule-binding potentiality features. Specifically, GO nanosheets, both in aqueous dispersion and in solid state, were successfully modified with different amino-containing moieties, in order to obtain graphene-based nanostructures able to respond to chemical stimuli (e.g., pH) and with tunable surface properties. The physisorption of dye-labelled lipid vesicles loaded with curcumin, was scrutinised both theoretically and experimentally. The energetics of the hybrid lipid membrane-curcumin-GO interface at different pH values, representative respectively of physiological (7.4) and pathological (5.5) environment, were estimated by molecular dynamics (MD) simulations. The GO and GO-N samples characterization by Raman, fluorescence, and UV-vis spectroscopies, as well as confocal microscopy demonstrated promising features of the (N-)GO/lipid platforms for fluorescence imaging and drug delivery applications.
2017
2D nanomaterials, supported lipid bilayers, surface functionalisation, molecular dynamics, confocal microscopy
File in questo prodotto:
File Dimensione Formato  
matersci-04-00043.pdf

accesso aperto

Tipologia: Versione Editoriale (PDF)
Dimensione 2.15 MB
Formato Adobe PDF
2.15 MB Adobe PDF Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/20505
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 7
  • ???jsp.display-item.citation.isi??? 6
social impact