We have investigated the effects of noradrenaline (NA) on the spontaneous firing activity of red nucleus (RN) neurons recorded extracellularly in anesthetized rats by using an in vivo electrophysiological technique. Microiontophoretic applications of NA (5-100 nA for 30 s) modified the background firing rate in 99 out of 124 neurons and three different patterns of response were observed in distinct cells. In 61% of the responding neurons NA decreased the mean firing rate, whereas 22% of the neurons responded to NA application with an increase of their spiking activity; in a smaller group of cells (17%) NA exerted a biphasic inhibitory/excitatory effect on the spontaneous firing rate. The effects of NA were reversible and dose-dependent. From histological examination, the neurons responding to NA with a purely inhibitory effect were scattered throughout the RN. On the other hand, the neurons responding to NA with an excitation were found to be more numerous in the dorso-medial part of the RN, whereas the neurons in which NA induced biphasic effects appeared to be segregated in the outer lateral portion of the RN. The alpha 2-adrenoceptor antagonist yohimbine completely blocked the inhibitory effect of NA but was unable to antagonize the excitatory response. In addition, the inhibitory effect of NA was mimicked by clonidine, a selective agonist of alpha 2-adrenoceptors; clonidine had no effect on those cells which responded to NA with an increase of the mean firing rate. The excitatory effect of NA was mimicked by the beta-receptor agonist isoprenaline and was antagonized by timolol, a selective antagonist of beta-adrenoceptors. Isoprenaline was ineffective in those cells in which NA exerted inhibitory responses. Taken together, our results indicate that the inhibitory effect of NA on the firing activity of rat RN neurons were mediated by alpha 2-adrenoceptors, whereas beta-adrenoceptors were responsible for the excitatory effects.

Noradrenaline modifies the spontaneous spiking activity of red nucleus neurons in the rat by activation of a2- and b- adrenoceptors

CIRANNA, Lucia;
1996-01-01

Abstract

We have investigated the effects of noradrenaline (NA) on the spontaneous firing activity of red nucleus (RN) neurons recorded extracellularly in anesthetized rats by using an in vivo electrophysiological technique. Microiontophoretic applications of NA (5-100 nA for 30 s) modified the background firing rate in 99 out of 124 neurons and three different patterns of response were observed in distinct cells. In 61% of the responding neurons NA decreased the mean firing rate, whereas 22% of the neurons responded to NA application with an increase of their spiking activity; in a smaller group of cells (17%) NA exerted a biphasic inhibitory/excitatory effect on the spontaneous firing rate. The effects of NA were reversible and dose-dependent. From histological examination, the neurons responding to NA with a purely inhibitory effect were scattered throughout the RN. On the other hand, the neurons responding to NA with an excitation were found to be more numerous in the dorso-medial part of the RN, whereas the neurons in which NA induced biphasic effects appeared to be segregated in the outer lateral portion of the RN. The alpha 2-adrenoceptor antagonist yohimbine completely blocked the inhibitory effect of NA but was unable to antagonize the excitatory response. In addition, the inhibitory effect of NA was mimicked by clonidine, a selective agonist of alpha 2-adrenoceptors; clonidine had no effect on those cells which responded to NA with an increase of the mean firing rate. The excitatory effect of NA was mimicked by the beta-receptor agonist isoprenaline and was antagonized by timolol, a selective antagonist of beta-adrenoceptors. Isoprenaline was ineffective in those cells in which NA exerted inhibitory responses. Taken together, our results indicate that the inhibitory effect of NA on the firing activity of rat RN neurons were mediated by alpha 2-adrenoceptors, whereas beta-adrenoceptors were responsible for the excitatory effects.
1996
noradrenaline; red nucleus; electrophysiology
File in questo prodotto:
File Dimensione Formato  
Noradrenaline modifies the spontaneous spiking activity.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 524.3 kB
Formato Adobe PDF
524.3 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/2122
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 13
  • ???jsp.display-item.citation.isi??? 11
social impact