We have shown that cortical neurons challenged with toxic concentrations of beta-amyloid peptide (betaAP) enter the S phase of the cell cycle before apoptotic death. Searching for a signaling molecule that lies at the border between cell proliferation and apoptotic death, we focused on the disialoganglioside GD3. Exposure of rat cultured cortical neurons to 25 muM betaAP(25-35) induced a substantial increase in the intracellular levels of GD3 after 4 hr, a time that precedes neuronal entry into S phase. GD3 levels decreased but still remained higher than in the control cultures after 16 hr of exposure to betaAP( 25-35). Confocal microscopy analysis showed that the GD3 synthesized in response to betaAP colocalized with nuclear chromatin. The increase in GD3 was associated with a reduction of sphingomyelin (the main source of the ganglioside precursor ceramide) and with the induction of alpha-2,8-sialyltransferase (GD3 synthase), the enzyme that forms GD3 from the monosialoganglioside GM3. A causal relationship between GD3, cell-cycle activation, and apoptosis was demonstrated by treating the cultures with antisense oligonucleotides directed against GD3 synthase. This treatment, which reduced betaAP(25-35)-stimulated GD3 formation by similar to50%, abolished the neuronal entry into the S phase and was protective against betaAP(25-35)-induced apoptosis.

ß-amyloid-induced synthesis of the ganglioside Gd3 is a requisite for cell cycle reactivation and apoptosis in neurons

COPANI, Agata Graziella;
2002-01-01

Abstract

We have shown that cortical neurons challenged with toxic concentrations of beta-amyloid peptide (betaAP) enter the S phase of the cell cycle before apoptotic death. Searching for a signaling molecule that lies at the border between cell proliferation and apoptotic death, we focused on the disialoganglioside GD3. Exposure of rat cultured cortical neurons to 25 muM betaAP(25-35) induced a substantial increase in the intracellular levels of GD3 after 4 hr, a time that precedes neuronal entry into S phase. GD3 levels decreased but still remained higher than in the control cultures after 16 hr of exposure to betaAP( 25-35). Confocal microscopy analysis showed that the GD3 synthesized in response to betaAP colocalized with nuclear chromatin. The increase in GD3 was associated with a reduction of sphingomyelin (the main source of the ganglioside precursor ceramide) and with the induction of alpha-2,8-sialyltransferase (GD3 synthase), the enzyme that forms GD3 from the monosialoganglioside GM3. A causal relationship between GD3, cell-cycle activation, and apoptosis was demonstrated by treating the cultures with antisense oligonucleotides directed against GD3 synthase. This treatment, which reduced betaAP(25-35)-stimulated GD3 formation by similar to50%, abolished the neuronal entry into the S phase and was protective against betaAP(25-35)-induced apoptosis.
File in questo prodotto:
File Dimensione Formato  
J NeurosciGD3.pdf

solo gestori archivio

Tipologia: Versione Editoriale (PDF)
Licenza: NON PUBBLICO - Accesso privato/ristretto
Dimensione 310.55 kB
Formato Adobe PDF
310.55 kB Adobe PDF   Visualizza/Apri

I documenti in IRIS sono protetti da copyright e tutti i diritti sono riservati, salvo diversa indicazione.

Utilizza questo identificativo per citare o creare un link a questo documento: https://hdl.handle.net/20.500.11769/21532
Citazioni
  • ???jsp.display-item.citation.pmc??? ND
  • Scopus 87
  • ???jsp.display-item.citation.isi??? 83
social impact